TLCM 417: SIGNALS AND SYSTEMS

DAY: MONDAY

DATE: 13/4/ 2015

TIME: 14:00PM- 16:00PM
STREAM: Y4S1

INSTRUCTION TO CANDIDATE

> ATTEMPT QUESTION ONE AND ANY OTHER THREE

QUESTION ONE (30 MARKS)

a) A discrete time signal is represented by the following sequence $x(n)=\{0,0,0,1,2,3,3\}$, sketch and label each of the following signals.

$$
\text { i. } \quad x(n-3)
$$

ii. $x(3 n)$
iii. $\quad x(-n+3)$

2marks
b) Give any FOUR reasons why signal processing in digital domain is better than the analog domain
c) Given $\mathrm{y}(\mathrm{n})=\frac{x^{2}(n)}{x(n-1)}$ prove that the system is homogeneous
d) The input $x(n)$ and the impulse response $h(n)$ of a discrete -time LTI system are given by $x(n)=u(n)$ and $h(n)=a^{n} u(n)$ for $0<a<1$. determine $y(n)=x(n) * h(n)$
e) Find the frequency response of the system describe by the following LCCDE $y(n)=1.349 y(n-1)-0.9 y(n-2)+x(n)-1.41 x(n-1)+x(n-2)$
f) Given the sequence $\mathrm{x}(\mathrm{n})=(6-\mathrm{n})[\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-6)]$, determine $y(n)=x(4-n)$
g) Define the convolution theorem in frequency domain of two sequences $x(n)$ and $h(n)$

QUESTION TWO (20 MARKS)

a) Determine the fundamental period of the following signal $x(n)=e^{j \frac{\pi n}{16}} \cos (n \pi / 17)$ (4marks)
b) A system is represented by the following sequence $x(n)=-\alpha^{n} u(-n-1)$ and $|\alpha|>1$ determine the DTFT

6marks
c) Briefly state the following properties of Discrete Time Fourier Transform
i. Linearity
ii. Time reversal
iii. Modulation
iv. Convolution 4marks
d) Consider the following LCCDE for $\mathrm{y}(\mathrm{n})-0.25 \mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-2)$ for $\mathrm{x}(\mathrm{n})=\delta(\mathrm{n})$ solve for $\mathrm{y}(\mathrm{n})$ using the DTFT method.
(6marks)

QUESTION THREE (20 MARKS)

a) Solve the following LCCDE for $\mathrm{y}(\mathrm{n})$ assuming zero initial conditions

$$
\mathrm{y}(\mathrm{n})-0.25 \mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-2) \text { using DTFT. When } \mathrm{x}(\mathrm{n})=\delta(\mathrm{n})
$$

b) If $h(n)$ is the system response to an LSI system. Find the frequency response when $h(n)=\delta(n)+6 \delta(n-1)+3 \delta(n-2)$
c) Give elaborate account of the process of digital to analog conversion indicating relevant expressions

QUESTION FOUR (20 MARKS)

a) Find the z -transform of the sequence $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{n} u(-n)$
b) Find the z-transform of $x(n)=\left(\frac{1}{2}\right)^{n} u(n)-2^{n} u(n-1)$. Show the ROC
c) Find the inverse of the following z-transform $X(z)=\frac{1}{1+3 z^{-1}+2 z^{-2}}|z|>2$
d) Prove the following DTFT theorems
i. Periodicity
ii. Shifting
iii. Conjugate 6marks

QUESTION FIVE (20 MARKS)

a) Given the following sequence use graphical method to perform the convolution $y(n)=x(n) * h(n)$. $x(n)=\{12345\}$ and $h(n)=\{63578\}$

8marks
b) Find the z-transform of the following sequences $y(n)=x(n)+x(n-1)+x(n-2) \quad$ 4marks
c) Name any four signal sources applicable for digital signal processing 4marks)
d) Define the following properties of LSI systems
i. Additivity 2marks
ii. Homogeneity 2marks

