KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATION

TLCM 417: SIGNALS AND SYSTEMS

DAY: MONDAY

DATE: 13/4/ 2015

TIME: 14:00PM- 16:00PM

STREAM: Y4S1

INSTRUCTION TO CANDIDATE

> ATTEMPT QUESTION ONE AND ANY OTHER THREE

QUESTION ONE (30 MARKS)

a)	A disc	crete time signal is represented by the following sequence $x(n)$	$= \{0,0,0,1,2,3,3\},$ sketch
	and la	abel each of the following signals.	A
	i.	x(n-3)	2marks

ii.	x(3n)	2marks
ii.	x(3n)	2ma

- iii. x(-n+3) 2marks
- b) Give any FOUR reasons why signal processing in digital domain is better than the analog domain (4marks)

c) Given
$$y(n) = \frac{x^2(n)}{x(n-1)}$$
 prove that the system is homogeneous (4marks)

- d) The input x(n) and the impulse response h(n) of a discrete –time LTI system are given by x(n)=u(n) and $h(n)=a^nu(n)$ for 0 < a < 1. determine y(n)=x(n) * h(n) (6marks)
- e) Find the frequency response of the system describe by the following LCCDE y(n)=1.349y(n-1) - 0.9y(n-2)+x(n)-1.41x(n-1) + x(n-2) (4marks)
- f) Given the sequence x(n)=(6-n)[u(n)-u(n-6)], determine y(n)=x(4-n) (4marks)
- g) Define the convolution theorem in frequency domain of two sequences x(n) and h(n)

(2marks)

QUESTION TWO (20 MARKS)

- a) Determine the fundamental period of the following signal $x(n) = e^{j\frac{\pi n}{16}} \cos(n\pi/17)$ (4marks)
- b) A system is represented by the following sequence $x(n) = -\alpha^n u(-n-1)$ and $|\alpha| > 1$ determine the DTFT

c) Briefly state the following properties of Discrete Time Fourier Transform

- i. Linearity
- ii. Time reversal
- iii. Modulation
- iv. Convolution 4marks
- d) Consider the following LCCDE for y(n)-0.25y(n-1)=x(n)-x(n-2) for $x(n)=\delta(n)$ solve for y(n) using the DTFT method.

QUESTION THREE (20 MARKS)

- a) Solve the following LCCDE for y(n) assuming zero initial conditions y(n) - 0.25y(n-1)=x(n)-x(n-2) using DTFT. When x(n)= $\delta(n)$ (6marks)
- b) If h(n) is the system response to an LSI system. Find the frequency response when $h(n)=\delta(n)+6\delta(n-1)+3\delta(n-2)$

(7marks)

(6marks)

6marks

c) Give elaborate account of the process of digital to analog conversion indicating relevant expressions

(7marks)

QUESTION FOUR (20 MARKS)

a) Find the z-transform of the sequence $x(n) = \left(\frac{1}{3}\right)^n u(-n)$ (4 marks)

b) Find the z-transform of
$$x(n) = \left(\frac{1}{2}\right)^n u(n) - 2^n u(n-1)$$
. Show the ROC (6marks)

c) Find the inverse of the following z-transform
$$X(z) = \frac{1}{1 + 3z^{-1} + 2z^{-2}}$$
 |z|>2 (4marks)

- d) Prove the following DTFT theorems
 - i. Periodicity
 - ii. Shifting
 - iii. Conjugate 6marks

QUESTION FIVE (20 MARKS)

a)	Given the following sequence use graphical method to perform the convolution $y(n)=x(n)*h(n)$			
	x(n)=	$\{12345\}$ and $h(n) = \{63578\}$	8marks	
b)	Find t	he z-transform of the following sequences		
	y(n)=	x(n)+x(n-1)+x(n-2)	4marks	
c)	Name	any four signal sources applicable for digital signal processing	4marks)	
d)	Define the following properties of LSI systems			
	i.	Additivity	2marks	
	ii.	Homogeneity	2marks	