

MOI UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR (ACADEMICS, RESEARCH & EXTENSION)

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF

BACHELOR OF ENGINEERING
IN
INDUSTRIAL AND TEXTILE ENGINEERING

COURSE CODE:

MIT 234

COURSE TITLE:

INDUSTRIAL MECHANICS

DATE:

9TH JUNE, 2017

TIME: 2.00 P.M. – 5.00 P.M.

INSTRUCTION TO CANDIDATES

SEE INSIDE.

THIS PAPER CONSISTS OF (3) PRINTED PAGES

PLEASE TURN OVER

Instructions.

- 1. This paper contains seven questions. All questions have equal marks
- 2. Attempt any five questions only.
- Exam duration is three hours only.

Constants.

- Modulus of rigidity, C = 84 GPa
- Young's modulus, E = 200 GPa
- Density of cast iron = 7.2 Mg/m³
- Gravitational constant, q = 9.81 m/s²
- Pi = 3.14

O QUESTION ONE

- a) A uniform rod of length 20m has a square cross-section of side 0.1m and is made from an alloy with a density of 3.0kg/m³. Calculate its moment of inertia about an axis perpendicular to its length and through:
 - (i) Its center of gravity,
 - (ii) One end.

3 marks

- b) A steel cylinder of 500 mm outside cylinder and 200 mm inside diameter is set in rotation about its axis. If the cylinder is 900 mm long and has a density of 7,800 kg/m³, calculate the torque required to give it an angular acceleration of 0.5 rad/s².
- c) A carding engine cylinder has a mass of 200kg and its radius of gyration is 50 cm.
 - i. What is its K.E at 180 rev/min?

2 marks

ii. If the moment of inertia of the cylinder is 50% of that of the entire machine, what torque and maximum power are required to accelerate the engine from rest to its operating speed of 180 rev/min in 30 seconds?

5 marks

M QUESTION TWO

- a) Differentiate between:
 - (i). Kinematics and Dynamics.

3 marks

(ii). Static and Dynamic balancing.

3 marks

b) What happens when the moving parts in an engine are not in complete balance?

3 marks

c) A shaft carries four masses A, B, C, and D. The masses are 15 kg, 10 kg, 18 kg, and 12 kg, and their radius of rotations are 4 cm, 5 cm, 6 cm, and 3 cm respectively. The angular positions of the masses B, C and D are 60°, 130° and 270° from the mass A. Find the magnitude and position of the balancing mass at a radius of 10 cm.

8 marks

QUESTION THREE

With respect to vibrations in machines discuss the following:

a) Causes

6 marks

b) Harmful effects

2 marks

) Remedies

6 marks

QUESTION FOUR

a) With the help of illustrations, differentiate amongst the three main types of vibrations

6 marks

- b) A flywheel is mounted at a height of 0.6 m from the bottom on a vertical shaft of diameter 50 mm and of length 1.5 m, fixed at both ends. The flywheel has a mass of 450 kg, and a radius of gyration 0.5 m. Find the natural frequencies of:
 - (i) Longitudinal vibration.

4 marks

(ii) Torsional vibration.

4 marks

TOUESTION FIVE

- A shaft is supported in bearings at A and B, 2.2 m apart (see Figure Q5a). A rotor of total mass 40 kg is mounted at a point 1.2 m from bearing A. Given that the centre of gravity of the rotor is offset 2 mm from the axis of rotation O.
 - (i) Dynamic loads on the bearings when the shaft rotates at 600 rpm

4 marks

(ii) Maximum and minimum bearing reactions, specifying whether the reaction is downward or upward.

7 marks

Figure Q5a

Give a simple explanation of the Coriolis force and its effect.

3 marks

QUESTION SIX

- A heavy machine roller has a mass of 500 kg, a radius of gyration of 20 cm and an operating speed of 90 rpm:
 - (i) What is its Kinetic energy at its operating speed?

2 marks

- (ii) If the moment of inertia of the cylinder is 80 % of that of the entire machine, what torque and maximum power 6 marks are required to accelerate the engine from rest to its operating speed in 10 seconds?.
- The 50 kg block moves between vertical guides as shown in Figure Q 6b. The block is pulled 40 mm down from its equilibrium position and released. Assuming a static load of magnitude P = 12 kN in your calculation, determine the:
 - (i) Period of the vibration

2 marks

(ii) Maximum velocity of the block

2 marks

(iii) Maximum acceleration of the block

2 marks

. duestion seven

6 marks

- Discuss the classification of gears b) There are four gears A, B, C, and D in a reverted gear train. A is the driver, D is the driven and B, C are on the same
 - shaft. The speed ratio of the gear train is 16. The module pitch of gears A and B is 4 mm and of C and D is 2 mm.

2 marks

- (i) Draw a labelled sketch of the reverted gear train.
- (ii) Calculate the suitable number of teeth for the gears if the distance between the shafts is approximately 150 mm.
 - 6 marks