

UNIVERSITY EXAMINATIONS: 2014/2015 ORDINARY EXAMINATION FOR THE BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

BIT 1110 MATHEMATICS FOR SCIENCE

DATE: APRIL, 2015

TIME: 2 HOURS

INSTRUCTIONS: Answer Question ONE and any other TWO

QUESTION ONE (30 MARKS)

×		
a)	i) Differentiate clearly <i>Rational</i> and <i>Irrational</i> numbers	(2 marks)
	ii). State whether the number $5+\sqrt{7}$ is rational or irrational. Justify	your answer.
		(2 marks)
b)	Express in standard form and rationalize $\frac{1+\cos\theta}{1-\cos\theta}$	(4 mark)
c)	Simplify $\frac{36a^2b \times 9ab^2}{9a^2b}$	(3 marks)
4)	Solve the equation $\log(r+2)+2\log 9-3$	(3 marks)
u)	Solve the equation $\log(x+2)+2\log(y-3)$	(J marks)
e)	Use series to express the repeated decimal into a fraction 7564	(5 marks)
f)	If $f(x) = ax^4 + bx^3 - x^2 + 2x + 3$ has a remainder 11 when divided by a	(x-2) and has
	Remainder 2 when divided by $(x+1)$. Find the values of a and b	(6 marks)
g)	The roots of the equation $2x^2 + 10x - 5 = 0$ are α and β . Find an equation	ion whose roots
	4 4	

are
$$\frac{4}{\alpha}$$
 and $\frac{4}{\beta}$. (5 marks)

QUESTION TWO (20 MARKS

-			`		
a)	i)	State t	he remainder theorem and factor theorem	(2 marks)	
		ii.	Given that $f(x) = 3x^3 - 1 x^2 - 19x - 5$. Find the remaind	er when $f(x)$ is	
			divided by $(x+1)$, using long division. Is $(x+1)$ a factor of	of $f(x)$?	
				(5 marks)	
		ii)	Solve the equation $3x^3 - 1 h^2 - 19x - 5 = 0$	(5 marks)	
	b)	Given	the function $f(x) = 5x^2 - 12x + 25$		
		i)	Express $f(x)$ in standard form	(5 marks)	
		ii)	State the minimum value, vertex, and line of symmetry of	f(x)	
				(3 marks)	
		STIO I	N THDEE (20 MADES)		
Q a)	i)	State t	he difference between a sequence and a series	(2 marks)	
	ii) The 12 th term of an arithmetic progression is 32 and the 5 th term is 18.Fir				
		30 th te	rm and the sum of the first 30 terms.	(6 marks)	
b)	John was recently employed by a company with annual salary of Ksh 20,000. Salary				
	scheme entails an annual salary increase of Ksh. 5,000 at the end of each year of				
	service. Find				
		i)	The salary earned by John during his 40 th year	(3 marks)	

ii) The total salary earned by John during 40 years of employment.

(4 marks)

c) The roots of the equation $x^2 - 12x - 8 = 0$ are α and β . Find the values of $\alpha^2 - 5$ and $\beta^2 - 5$. (5 marks)

QUESTION FOUR (20 MARKS)

- a) i) Define permutation and combinations of r objects from *n*objects (2 marks)
 - ii) In how many ways can the five letters word be formed from the letters of the word BESIOGU? (3 marks)
 - iii) In how many ways can a customer at the super market select 3 different types of soda from 30 available types, and 10 different packets of biscuits from 12 different available packets? (3 marks)
- b) Find the binomial expansion for $(1+x)^{1/2}$ up to and including x^3 . By substituting 0.08 for x in $(1+x)^{1/2}$ and its expansion, find $\sqrt{3}$ correct to 4 decimal place. (6 marks)

c) Solve the equation for values of θ from 0^{0} to 360 inclusive $4\cot^{2}\theta + 39 = 24\cos^{2}\theta$ (6 marks)

QUESTION FIVE (20 MARKS)

- a) Eliminate θ from the following equations $x = a \sec \theta, y = b \tan \theta$ (4 marks)
- b) If $\sin A = \frac{3}{5}$, $Sin B = \frac{5}{13}$, where A and B are acute angles, find the value of $\cos(A+B)$ without using tables or calculator. (5 marks)
- c) Prove that $\cos A = 4\cos^3 A 3\cos A$ (5 marks)
- d) $\log x 4\log 5 + 3 = 0$ (6 marks)