

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE STATISTICS

STA 222: TIME SERIES ANALYSIS I

DATE: APRIL 12, 2017	TIME: 11:00 AM-1:00 PM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a)	State and explain main objectives in analysing a time series.	[4 Marks]
b)	Define a time series and give two examples.	[4 Marks]
c)	Explain four phases that can exist in a business cycle.	[4 Marks]

d) The monthly sales of life insurance cover by a certain company in a given year are as shown in the table below.

	Month	Jan	Fe	Mar	Apri	Ma	Jun	July	Aug	Sep	Oc	Nov	Dec
			b		1	У	e			t	t		
	No. of policie s	52	38	43	45	40	38	32	38	41	34	22	24
С	ompute a	five-	month	n movii	ng aver	age an	d desci	ibe the	trend.			[5	Marks]
D	escribe H	lolt-W	/inters	s smoo	thing p	rocedu	re.					[5	Marks]
E	xplain the	e forec	castin	g proce	edure ba	ised or	n expoi	nential	smootl	ning.		[5	Marks]
G	ive three	purpo	ses o	f decon	npositio	on of a	time s	eries.				[3	Marks]

e) f)

g)

OUESTION TWO (20 MARKS)

a) Give the steps used in calculating the seasonal indices by the method of ratio to trend.

[5 Marks]

b) Calculate the quarterly seasonal indices in respect to the following data by using the ratio to trend method and comment on the results. [15 Marks]

Year	Q1	Q2	Q3	Q4
1996	71	68	79	71
1997	76	69	82	74
1998	74	66	84	80
1999	76	73	84	78
2000	78	74	86	82

OUESTION THREE (20 MARKS)

a) The following data can be fitted by the model $y_t = ab^t$

Year	1951	1961	1971	1981	1991	2001	2011
Production in	25	25.1	27.9	31.9	36.1	43.9	54.7
(000) tones							

Determine the values of a, b and hence forecast the production for the year 2027

[10 Marks]

- b) If $X_t = \mu + Z_t + \beta Z_{t-1}$, where μ is a constant, show that the autocorrelation function does not depend on [5 Marks]
- c) Derive the least-squares estimates for a first-order AR process having mean µ.

[5 Marks]

QUESTION FOUR (20 MARKS)

- a) Define the following processes,
 - (i) A random walk. [2 Marks]
 - (ii) A strictly stationary process [2 Marks]
- b) Consider the AR(2) process $X_t = 1.1X_{t-1} 0.18X_{t-2} + Z_t$ where $\{Z_t\}$ is a series of white noise with mean 0 and variance,
 - (i) Please show that this series is stationary. [5 Marks]
 - (ii) Please derive the first two partial autocorrelation functions. [6 Marks]

Page 2 of 3

c) Derive the Yule-Walker equations satisfied by the a.c.f of an AR(p) process. [5 Marks]

QUESTION FIVE (20 MARKS)

÷

- a) Given the following exponential curve x_t = a + bc^t show how you can estimate the values of a, b and c using the method of three selected points. [8 Marks]
 b) Consider the ARIMA (1, 1) process X_t = θ₀ + θ₁X_{t-1} + Z_t + θ₂Z_{t-1}, where {Z_t}a
- series of white noise with mean 0 is and variance.
 - i. For what values of θ_0 , θ_1 , and θ_2 is this series stationary and invertible? Show detailed derivation. [5 Marks]
 - ii. Derive by the method of moments the estimators of θ_0 , θ_1 and θ_2 [5 Marks]
- c) Give the difference between a stochastic time series which is stationary in the strict sense and the one that is stationary in the weak sense. [2 Marks]

---END----

