

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN STATISTICS

STA 122 COMPUTATIONAL METHODS AND DATA ANALYSIS I

DATE: APRIL 5, 2018

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a) Defin	e the following terms	
	i) Algorithm	(1 mark)
	ii) Debugging	(1 mark)
	iii) Program	(1 mark)
	iv) Data frame	(1 mark)
	v) Vectors	(1 mark)

b) Name the four components of the flow control in Statistical computing (4 marks)

c) State what the following command does (3 marks)

- d) State and describe five types of data representation in a computer (5 marks)
- e) Write an algorithm for computing the variance given by the equation below (4 marks)

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^{2}$$

TIME: 11:00 AM - 1:00 AM

- f) Describe a general algorithm for determining the largest representable number without producing overflow. (5 marks)
- g) Consider the continuous function

$$f(x) = \begin{cases} x^2 + 2x + 3 & \text{if } x < 0\\ 2x - 0.5x^2 & \text{if } 0 \le x < 2\\ x^2 + 4x - 7 & \text{if } 2 \le x \end{cases}$$

Write a function tmpFn which takes a single argument xVec. The function should return the vector of values of the function f(x) evaluated at the values in xVec. Hence plot the function f(x) for 3 < x < 3. (4 marks)

QUESTION TWO (20 MARKS)

a)	a) State a step by step process of plotting the pie chart of a continuous numeric variable of		
	eruptions duration in faithful dataset of R	(4 marks)	
b)	Discuss the three sources of errors in computational methods	(6 marks)	
c)	c) Find the smaller root of the equation $x^2 - 32x + 1 = 0$ correct to four significant figures		
		(3 marks)	
d)	Find the number of terms of the exponential series such that their su	um gives the value of e ^x	
	correct to six decimal places at $x = 1$.	(3 marks)	
e)	Describe the four features of an Algorithm	(4 marks)	

QUESTION THREE (20 MARKS)

- a) Highlight the consequences of violating exploratory data analysis assumptions (5 marks)
- b) Discuss a step by step procedure of importing data from (4 marks)
 - i) SPSS
 - ii) EXCEL

into R.

c) Define the term exploratory data analysis and state its attributes (5 marks)

- (i) *if(*)
- (ii) while()
- (iii) ifelse()

QUESTION FOUR (20 MARKS)

- a) Describe major data representation in the computer (6 marks)
- b) Find the smaller root of the equation $x^2 400 x + 1 = 0$ using four digit arithmetic.

(4	marks)
1.	· · · · · · · · · · · · · · · · · · ·

- c) Define the term normalized floating point and give an example (4 marks)
- e) Cleary describe three philosophies of data analysis (6 marks)

QUESTION FIVE (20 MARKS)

- a) Identify and describe five errors encountered in numerical computation (5 marks
- b) State the four major assumptions of exploratory data analysis (5 marks)
- c) Suppose $x_0 = 1$ and $x_1 = 2$ and

$$x_j = x_{j-1} - \frac{1}{x_{j-1}}$$
 for $j = 1, 2,$

Write a function *testLoop* which takes the single argument *n* and returns the first *n*-1 values of the sequence $\{x_j\}_{j\geq 0}$: that means the values of $x_0, x_1, x_2, \dots, x_{n-2}$. (5 marks)

d) Write a program that calculates the sum of cubes of positive integers from 1 to *n* for a given value of *n*, i.e.,

$$\sum_{i}^{n} i^{3}$$

Check your code against the direct formula

$$\sum_{i}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

for different values of n, such as n = 3, n = 30, and n = 300.

(5 marks)

72