

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE STATISTICS

STA 122: COMPUTATIONAL METHODS AND DATA ANALYSIS I

DATE: APRIL 10, 2017 TIME: 8:30-10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a) Define the following terms

i. Factors

[1 Mark]

ii. Function

[1 Mark]

iii. Matrix

[1Mark]

iv. Data frame

[1Mark]

v. Vectors

[1Mark]

b) List the advantages of using R in data analysis and as a platform for statistical computing.

[4 Marks]

c) Name the four components of the flow control in Statistical computing

[4 Marks]

d) State what the following command does

[5 Marks]

$$x <- 3 \text{ if}(x>2) y <- 2*x \text{ else } y<- 3*x$$

e) Write an R code to compute

[5 Marks]

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (x - \bar{x})^2$$

QUESTION TWO (20 MARKS)

a)	Name the f	four components	of the flo	w control in	Statistical	computing
----	------------	-----------------	------------	--------------	-------------	-----------

[4 Marks]

- b) State a step by step process of plotting the pie chart of a continuous numeric variable called eruptions duration in faithful dataset of R [4 Marks]
- c) Define the term vector and comment on the following two lines below
 - (i) c(3,4,10,18,38)

[3 Marks]

- d) Suppose we have the data 2, 4, 8, 2, 13,3,7,21,19. Write an R code to read the data into R command line and plot the histogram. [3 Marks]
- e) The sample mean of the values of a variable X is given by the formula

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

write a computer programme to implement the above formula

[3 Marks]

f) State the main three components of a function structure

[3 Marks]

QUESTION THREE (20 MARKS)

a) Discuss a step by step procedure of importing data from

[9 Marks]

- (i) SPSS
- (ii) EXCEL
- (iii)Text file
- b) Define the term exploratory data analysis and state its attributes

[5 Marks]

- c) Write an R code to create a frequency distribution table
 - (i) Draw a bar chart

[3 Marks]

(ii) Pie chart

[3 Marks]

QUESTION FOUR (20 MARKS)

a) Consider the following data of low temperatures for 50 days.

57	39	52	52	43
50	53	42	58	55
58	50	53	50	49
45	49	51	44	54
49	57	55	64	45
50	45	51	54	58
53	49	52	51	41
52	40	44	49	45
43	47	47	43	51
55	55	46	54	41

(i) write an r code to capture the following data

[2 Marks]

(ii) Write an r code to create a frequency distribution table

[5 Marks]

(iii) Write an R program to calculate the cumulative frequency curve of the above data.

[5 Marks]

b) Write an R program that will sort a vector of integers in ascending order.

[8 Marks]

QUESTION FIVE (20 MARKS)

a) Consider the following data for a group of patients in a study.

Id	patient initials	date of interview	age	Ethnic	marital status	religion
AA0001	DK	17.06.2003	38	Other	Married	Protestant
AA0002	SM	17.06.2003	33	Kikuyu	single	Other
AA0003	PL	25.06.2003	40	Luo	divorced	Other
AA0004	SN	26.06.2003	28	Kikuyu	Married	Protestant
AA0005	RM	26.06.2003	43	Kamba	Married	Other
AA0006	sc	30.06.2003	30	Kikuyu	widowed	Protestant
AA0007	WN	01.07.2003	32	Kikuyu	single	Protestant
AA0008	SK	03.07.2003	26	Kikuyu	single	Protestant

AA0009	JN	07.07.2003	42	Kikuyu	Married	Protestant
AA0010	PR	09.07.2003	40	Kikuyu	widowed	Catholic
AA0011	во	09.07.2003	29	Luo	separated	Protestant
AA0012	KM	11.07.2003	3.0	Kikuyu	widowed	Protestant
AA0013	ММ	14.07.2003	38	Kikuyu	Married	Protestant
AA0014	во	16.07.2003	35	Luo	single	Protestant
AA0015	JO	18.07.2003	27	Luo	Married	Catholic
AA0016	SN	22.07.2003	35	Kikuyu	single	Protestant
AA0017	GO	22.07.2003	26	Luo	Married	Protestant
AA0018	PM	23.07.2003	32	Kamba	Married	Catholic
AA0019	RM	23.07.2003	31	Kamba	separated	Protestant
AA0020	FG	30.07.2003	39	Kikuyu	widowed	Catholic

- (i) Assuming the data above is named carol, describe the procedure of creating a database coral in excel and importation into R software for analysis [6 Marks]
- (ii) Write a step by step procedure of creating a frequency distribution table of the variable age in the above data in R [6 Marks]
- b) Write a program that calculates the sum of cubes of positive integers from 1 to *n* for a given value of *n*, i.e.,

$$\sum_{i}^{n} i^{3}$$

Check your code against the direct formula

$$\sum_{i}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

for different values of n, such as n = 3, n = 30, and n = 300.

[8 Marks]

---END---