

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF **SCIENCE**

SMA 408: COMPLEX ANALYSIS II

DATE: DECEMBER 7, 2016

TIME: 8:30-10:30AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS) - COMPULSORY

a)	Define the following terms	
	i. Analytic function	(2 marks)
	ii. Harmonic function	(2 marks)
b)	Given that $F(z) = z^2$. Show that $F(\bar{z}) = \overline{F(z)}$	(4 marks)
c)	Define a conformal mapping.	(2 marks)
d)	Find the residues of $F(z)$ at each of its poles given that $F(z) = \frac{e^z}{(z-2)(z-4)}$	(4 marks)
	State without proof the Argument principle.	(4 marks)
f)	Find the order of the pole of $\frac{z^2+1}{e^z+1}$ at $z=\pi i$	(4 marks)
g)	Show that the function $f(z)=2x^2+y+i(y^2-x)$ is not analytic at any point	(5 marks)
h)	Discuss the singularity of $f(z) = \frac{e^z}{\sin z}$.	(3 marks)

QUESTION TWO (20 MARKS)			
a) Given the function $U(x, y) = x^3 - 3xy^2 - 5y$			
(i) show that u is harmonic in the entire complex plane	(4 marks)		
(ii) Find the harmonic conjugate function u	(4 marks)		
b) Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for the following	llowing annular domains		
(i) 0< z-1 <2	(4 marks)		
(ii) 0< z-3 <2	(5 marks)		

c) State without proof the Cauchy residue theorem.

(3 marks)

QUESTIONS THREE (20 MARKS)

- a) Show that $F_1(z) = z z^2 + z^3 z^4 + z^5$... is analytic in |z| < 1 and hence find a function that represents all analytic continuation of F(z) (7 marks)
- b) Evaluate $\int_0^\infty \frac{2x^2 1}{x^4 + 5x^2 + 4} dx$ (7 marks)
- b) Evaluate $\int_0^\infty \frac{1}{x^4 + 5x^2 + 4} dx$ c) Find the residue of $f(z) = \frac{\tan z}{z^2 + z + 1}$ at all singularities of $\tan z$. (6 marks)

QUESTION FOUR (20 MARKS)

- a) Evaluate $\int_{0}^{2\bar{x}} \frac{d\theta}{5+3\sin\theta}$ (8 marks)
- b) By considering the lines x = a and y = b in the z-plane, show that $f(z) = e^z$ is conformal at every point in the whole complex plane. (9 marks)
- c) Prove that for closed polynomials the sum of the exponents

$$\left(\frac{\alpha_1}{\pi}-1\right)$$
, $\left(\frac{\alpha_2}{\pi}-1\right)....\left(\frac{\alpha_n}{\pi}-1\right)$

In the Schwarz Christofell transformation is equal to -2. (3 marks)

QUESTIONS FIVE (20 MARKS)

- a) i) Define what is meant by an infinite product P_n converges. (2 marks)
 - ii) Show that the infinite product $\prod_{k=1}^{\infty} \left(1 \frac{z^3}{k^3}\right)$ converges. (5 marks)
- b) Show that $\prod_{k=1}^{\infty} \left(1 + \frac{1}{\sqrt{k+1}}\right)$ diverges. (4 marks)
- c) Evaluate $\int_0^\infty \frac{e^{2x}}{(x-2)^2 (x^2+1)} dx$ (7 marks)
- d) Show that $F(z) = z^2 + i$ does not satisfy the Shwarz reflection principle. (3 marks)

-END-