UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

SMA 405: ALGEBRA II

DATE: APRIL 3, 2018
TIME: 8:30 AM - 10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

OUESTION ONE (30 MARKS)

a)
i) Derive a group table/ Cayley table in \mathbb{Z}_{3}
ii) Name three families of group and identify among them the finitely generated group among them.
(4 marks
b) Show that an integral domain \mathbb{Z} is not a field
c) Show that a group of order 200 has a normal Sylow 5 subgroup.
d) Define Euclidean in integral domain and state its properties
e) Define Field extension and list four examples of a ring
f) Show that $\mathrm{f}(\mathrm{q})=q^{4}+2 q^{2}+1$ has no root in \mathbb{R} but has two distinct roots in X .
(5 marks)

OUESTION TWO (20 MARKS)

a)
i) Define multiplicity an of roots in polynomial (2 marks)
ii) Find all of the zeros and multiplicity of

$$
f(x)=4 x^{8}-64 x^{7}+445 x^{6}-1757 x^{5}+4310 x^{4}-6728 x^{3}+6528 x^{2}-3600 x+864
$$

b)
i) Define reducibility and irreducibility of a polynomial
ii) Determine whether the functions $\mathrm{f}(\mathrm{y})=y^{6}-27 y^{4}+243 y^{2}+729$ and $\mathrm{g}(\mathrm{x})=y^{3}+6$ are reducible or not. $\mathrm{x} \in \mathbb{R}$ or \mathbb{C}

QUESTION THREE (20 MARKS)

a)
i) Define a field
ii) Proof that If R is a field and $x y=0$ in P for some x, y with $x \neq 0$; then R is an integral domain
iii) Let $z \varepsilon \mathbb{C}$ be defined as $z=a+b i$ where $\{a, b\} \in \mathbb{R}$ and $z \neq 0$. Use Z to check whether \mathbb{C} is field or not?
b) State and Proof $1^{\text {st }}$ Sylow Theorem

QUESTION FOUR (20 MARKS)

a)
i) Define a ring and state its axioms (3 marks)
ii) Let Region R be a set of \mathbb{R} or \mathbb{Z} or Cand let $R(p)$ denotes polynomials in p whose coefficients in set of real numbers.
If $f(p)=2 p^{3}+p^{2}-5, g(p)=p^{2}-4 p+7$ and $h(p)=2 p$, Use f, g and h to verify axioms in $a(i)$ (7 marks)
b) State and Proof $2^{\text {nd }}$ Sylow Theorem

QUESTION FIVE (20 MARKS)

a) State and Proof $3^{\text {rd }}$ Sylow Theorem
b)
i) Define internal and external direct product of groups
ii) Give two examples of internal and external direct product of groups

