

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

SMA 405: ALGEBRA II

DATE: APRIL 3, 2018

TIME: 8:30 AM - 10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)

a)

b)

c) d) e) f)

i)	Derive a group table/ Cayley table in \mathbb{Z}_3	(2 marks)
ii)	Name three families of group and identify among them the finitely among them.	generated group (4 marks
Show t	hat an integral domain $\mathbb Z$ is not a field	(4 marks)
Show th Define Define Show th	hat a group of order 200 has a normal Sylow 5 subgroup. Euclidean in integral domain and state its properties Field extension and list four examples of a ring hat $f(q) = q^4 + 2q^2 + 1$ has no root in \mathbb{R} but has two distinct roots	(5 marks) (5 marks) (5 marks) in X. (5 marks)

QUESTION TWO (20 MARKS)

a)
i) Define multiplicity an of roots in polynomial (2 marks)

ii) Find all of the zeros and multiplicity of

 $f(x) = 4x^8 - 64x^7 + 445x^6 - 1757x^5 + 4310x^4 - 6728x^3 + 6528x^2 - 3600x + 864,$

where x $\epsilon \mathbb{R}$				(8 marks)
b)				

- i) Define reducibility and irreducibility of a polynomial (2 marks) ii) Determine whether the functions $f(y) = y^6 - 27y^4 + 243y^2 + 729$ and
 - $g(x) = y^3 + 6$ are reducible or not. $x \in \mathbb{R}$ or \mathbb{C}

QUESTION THREE (20 MARKS)

a)

b)

i)	Define a field	(2 marks)
ii)	Proof that If R is a field and $xy = 0$ in P for some	x,y with $x \neq 0$; then R is an
	integral domain	
		(3 marks)
iii)	Let $z \in \mathbb{C}$ be defined as $z = a + bi$ where $\{a, b\} \in \mathbb{R}$	and $z \neq 0$. Use Z to check
	whether C is field or not?	(5 marks)
State and	Proof 1 st Sylow Theorem	(10 marks)

QUESTION FOUR (20 MARKS)

a)			
	i)	Define a ring and state its axioms	(3 marks)
	ii)	Let Region R be a set of \mathbb{R} or \mathbb{Z} or Cand let R(p) whose coefficients in set of real numbers. If $f(p) = 2p^3 + p^2 - 5$, $g(p) = p^2 - 4p + 7$) denotes polynomials in p and $h(p) = 2p$, Use f, g and h to
		verify axioms in a(i)	(7 marks)
b)	State an	d Proof 2 nd Sylow Theorem	(10 marks)

QUESTION FIVE (20 MARKS)

a) State and Proof 3 rd Sylow Theorem	(10 marks)
--	------------

- b)
- i) Define internal and external direct product of groups (4 marks)
- ii) Give two examples of internal and external direct product of groups (6 marks)

--END---

(8 marks)