

# UNIVERSITY OF EMBU

## 2017/2018 ACADEMIC YEAR

#### SECOND SEMESTER EXAMINATIONS

#### FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

#### SMA 402: TOPOLOGY II

DATE: APRIL 3, 2018

TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS:

2

## Answer Question ONE and ANY Other TWO Questions.

#### **QUESTION ONE (30 MARKS)**

| a) | Let X be a nonempty set. Explain what is meant by a class of subsets of X say                                                         |              |
|----|---------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | $\mathcal{A} = \{G_i\}$ is an open cover of A where $A \subset X$ .                                                                   | (2 marks)    |
| b) | Let A be any finite subset of a topological space $(X, \tau)$ . Show that A is c                                                      | compact.     |
|    |                                                                                                                                       | (3 marks)    |
| c) | Explain what is meant by a class $\{A_i\}$ of sets to have a finite intersection                                                      | property and |
|    | hence show if or not the class $\mathcal{A} = \{(0,1), (0,\frac{1}{2}), (0,\frac{1}{3}),\}$ of intervals in $\mathbb{R}$ has a finite |              |
|    | intersection property.                                                                                                                | (4 marks)    |
| d) | Show that the open interval $A = (0,1)$ on the real line $\mathbb{R}$ with the usual topology is not                                  |              |
|    | sequentially compact.                                                                                                                 | (3 marks)    |
| e) | Let A be a compact subset of a Haursdorff space and suppose $p \in X \setminus A$ , show that                                         |              |
|    | there exists open sets G and H such that $p \in G$ , $A \subset H$ and $G \cap H = \emptyset$ .                                       | (4 marks)    |
| f) | State without proof the Urysohn's lemma.                                                                                              | (1 mark)     |
| g) | Define the following terms.                                                                                                           |              |
|    | i) Closed path                                                                                                                        | (1 mark)     |
|    | ii) Totally disconnected space                                                                                                        | (1 mark)     |
| h) | how that if A and B are non-empty separated sets, then $A \cup B$ is disconnected.                                                    |              |

(3 marks)

Knowledge Transforms



- i) Prove that a regular space need not to be T<sub>1</sub>-space.
- j) Let f: I → X be a path from a to b and let g: I → X be a path from b to c. Show that the juxtaposition of the two paths f and g denoted by f \* g is the function
  f \* g : I → X defined by

$$f * g = \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s < 1 \end{cases}$$

is a path from a to c.

## **QUESTION TWO (20 MAR KS)**

- a) Prove that the following statements are equivalent
  - i) X is compact
  - ii) For every class  $\{f_i\}$  of closed subsets of X,  $\cap f_i = \emptyset$  implies  $\{f_i\}$  contains a finite subclass  $\{f_{i1}, f_{i2}, \dots, f_{im}\}$  with  $f_{i1} \cap f_{i2} \cap \dots \cap f_{im} = \emptyset$ . (8 marks)
- b) Show that every compact subset A of Hausdorff space is closed. (3 marks)
- c) Let X be a Hausdorff space. Prove that every convergent sequence in X has a unique limit. (4 marks)
- d) Explain what is meant by a subset of a topological space X is compact and hence show that if A is any finite subset of a topological space X, then A is sequentially compact. (5 marks)

## **QUESTION THREE (20 MARKS)**

- a) Differentiate between the terms separated sets and a disconnected set. (4 marks)
- b) Consider the real line  $\mathbb{R}$  with the usual topology. Show that  $\mathbb{R}$  is locally compact.

(4 marks)

- c) Prove that every arcwise connected set A is connected. (5 marks)
- d) Consider the topology τ = {X, Ø, {a}, {b, c}} on X = {a,b,c} and the topology τ\* = {Y, Ø, {0}} on Y = {u,v}
  - i) Determine the defining subbase of product topology XxY. (5 marks)
  - ii) Determine the defining base for the product topology on XxY. (2 marks)

## **QUESTION FOUR (20 MARKS)**

a) Prove that the component of a totally disconnected space X are singleton subsets of X.
 (4 marks)



(4 marks)

(4 marks)

- b) Let  $G \cup H$  be a disconnection of A. Show that  $A \cap G$  and  $A \cap H$  are separated sets (5 marks)
- c) Let X be sequentially compact. Show that X is also countably compact. (6 marks)
- d) Let A be a subset of a topological space  $(X,\tau)$  and let  $\tau_A$  be the relative topology on A, then show that A is connected with respect to  $\tau$  if and only if A is connected with respect to  $\tau_A$ . (5 marks)

## **QUESTION FIVE (20 MARKS)**

R

- a) Let G be a base for a second countable space X. Prove that G is reducible to a countable base for X.
   (6 marks)
- b) Show that any infinite subset A of a discrete topological space X is not compact.

(6 marks)

- c) Define a product topology. (2 marks)
- d) Show that a function F: X → Y from a topological space X = □x<sub>i</sub> is continuous if and only if for every projection π<sub>i</sub>: X → X<sub>i</sub>, the composition π<sub>i</sub> ∘ F: Y → X<sub>i</sub> is continuous.
  (6 marks)

--END---

