

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR FIRST SEMESTER EXAMINATION

FIRST SEMESTER EXAMINATION FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, **SMA 401: TOPOLOGY I**

DATE: DECEMBER 5, 2016

TIME: 8:30-10:30AM

INSTRUCTIONS:

Answer Question ONE and ANY other TWO Questions

QUESTION ONE (30 MARKS)

a) Define what is meant by a topology on a set X.

- (3 marks)
- b) Is $\tau_1 = \{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}\$ a topology over the set $X = \{1,2,3,4,5\}$. Justify your answer.

(3 marks)

- c) Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Show that the composite function $(g \circ f)$ is also continuous. (4 marks)
- d) Let (X,τ) be a topological space. Denote a derived set of A by A^{\dagger} . Prove that a subset $A \subset X$ is closed if and only if $A^{\dagger} \subset A$. (5 marks)
- e) (i) Define a T_4 space.

(1 mark)

(ii) Let X be a T_4 - space. Then show that X is also a regular space.

(3 marks)

- f) Let $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}\$ be a topology defined on $X = \{a, b, c, d, e\}$. Find the closure of {b,d}. (4 marks)
- g) Let (X,τ) be a topological space. Prove that a subset $A \subseteq X$ is open if and only if its complement $X \setminus A$ is closed. (3 marks)

h) Let β_1 and β_2 be bases respectively for topologies τ_1 and τ_2 . Suppose each open set $B \in \tau_1$ is the union of members of β_2 , show that τ_1 is coarser than τ_2 . (4 marks)

QUESTION TWO (20 MARKS)

- a) Define a limit point of a subset A of a topological space X. (1 mark)
- b) Let $X = \{a,b,c,d,f\}$ and $\tau = \{X, \emptyset, \{a\}, \{b,c\}, \{a,b,c\}, \{c\}, \{a,f\}, \{f\}, \{b,c,f\}, \{a,b,c,f\}\}$. Let $A = \{a,c,d\}$. Show that b is a limit point of A but a is not. (5 marks)
- c) Show that if X is a discrete topological space and that A⊂ X, then the derived set of A is empty.
 (4 marks)
- d) Let X be a topological space and A, B $\subseteq X$. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. (3 marks)
- e) Let X be a topological space and A, B $\subset X$. Denote A° the interior of A.
 - i. Using an appropriate example show that $A^{\circ} \cup B^{\circ} \neq (A \cup B)^{\circ}$. (3 marks)
 - ii. Prove that $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$. (4 marks)

QUESTION THREE (20 MARKS)

- a) Show that the the property of a regular space is hereditary. (5 marks)
- b) Let $p \in X$ and denote N_p the set of all neighborhood of a point p. Prove the followings
 - i. For all pairs N, $M \in N_p$, $N \cap M \in N_p$. (3 marks)
 - ii. If $N \in N_p$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_p$. (3 marks)
- c) Consider the following topology on $X = \{a,b,c,d,e\}; \ \tau = \{X,\emptyset,\{a\},\{a,b\},\{a,c,d\},\{a,b,c,d\},\{a,b,e\}\}.$ If $A = \{a,b,c\}$ find
 - i. The exterior of A. (3 marks)
 - ii. The boundary of A. (3 marks)
 - iii. Hence show that the boundary of A, $\delta(A) = \bar{A} \cap (\overline{X/A})$. (3 marks)

QUESTION FOUR (20 MARKS)

- a) Let $F: X \to Y$ be a bijective function. Prove the following statements are equivalent:
 - i.) F is a homomorphism.
 - ii.) F is open.
 - iii.) F is closed.

iv.)
$$F(\overline{A}) = \overline{F(A)}$$
. (10 marks)

- b) Let P: X \rightarrow Y be a closed map. Let S \subset Y be any subset of Y and U \subset X be any open set in X such that $P^{-l}(S) \subset U$, prove that there exists an open set V \subset Y such that S \subset V and $P^{-l}(S) \subset P^{-l}(V) \subset U$. (4 marks)
- c) Let θ be a subbasis for the topologies τ and τ^* , then show that $\tau = \tau^*$. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Show that every point p in a discrete topological space X has a finite local base. (4 marks)
- b) Prove that a topological space X is a T_1 space if and only if every singleton subset $\{p\} \subset X$ is closed. (6 marks)
- c) Let (X, τ_x) nd (Y, τ_y) be topological spaces, show that that $F: X \to Y$ is closed if and only if $\overline{F(A)} \subset F(\overline{A})$ for all $A \subset X$. (5 marks)
- d) Let $X = \{a,b,c,d\}$ with $\tau_x = \{X, \emptyset, \{a,b\}, \{a\}, \{b\}\}$ and let $Y = \{x,y,z,t\}$ with $\tau_y = \{Y, \emptyset, \{x\}, \{y\}, \{x,y\}\}$. Define the function F as F(a) = x, F(b) = y, F(c) = z and F(d) = t. Show that F is a homomorphism. (5 marks)

--END--

