

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION (SCIENCE/ARTS), BACHELOR OF SCIENCE (INDUSTRIAL CHEMISTRY) AND BACHELOR OF SCIENCE (ANALYTICAL CHEMISTRY)

SMA 341: PROBABILITY AND STATISTICS II

DATE: NOVEMBER 30, 2016

TIME: 2:00-4:00PM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)

- a) Define the terms
 - i. indicator random variable

(2 marks)

ii. probability generating function

(2 marks)

b) Suppose that X and Y are two random variables with finite second moments. Also, assume that

$$P(X + Y = 0) < 1$$
. Show that
$$(E\{(X+Y)^2\})^{1/2} \le (E(X^2))^{1/2} + (E(Y^2))^{1/2}.$$

(4 marks)

c) Consider two random variables $X_1,\,X_2$ whose joint pdf is given by

$$f(x_1, x_2) = \exp\{-\theta x_1 - \theta^{-1} x_2\} I(x_1 > 0 \cap x_2 > 0)$$

with $\theta(>0)$. Are X_1 , X_2 independent?

(5 marks)

d) Show that $P(A) \in [0,1]$

(3 marks)

e) state and prove the central limit theorems

(5 marks)

- f) Let the moment generating function of a discrete random variable X be given by $M_x(t) = 0.25e^t + 0.35e^{3t} + 0.4e^{5t}$ Find P(X=3). (4 marks)
- g) Let X be a geometric random variable with parameter p.
 - i) Determine the probability generating function of X.

(3 marks)

ii) Find the mean of X for p=1/2.

(2 marks)

QUESTION TWO (20 MARKS)

a) You are given the random vector $X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$ with mean vector $\mu = \begin{bmatrix} 2 \\ 4 \\ -1 \\ 3 \\ 0 \end{bmatrix}$ and variance-

covariance matrix $\Sigma = \begin{bmatrix} 4 & -1 & 0.5 & -0.5 & 0 \\ -1 & 3 & 1 & -1 & 0 \\ 0.5 & 1 & 6 & 1 & -1 \\ -0.5 & -1 & 1 & 4 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{bmatrix}$.

Partition X as $X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} X^{(1)} \\ X^{(2)} \end{bmatrix}$. Let $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$

i) $E(BX^{(2)})$

(3 marks)

 $Cov(AX^{(1)})$

(3 marks)

iii) $Cov(X^{(1)}, X^{(2)})$

(3 marks)

iv)
$$Cov(AX^{(1)}, BX^{(2)})$$

(3 marks)

b) A car dealer sells X cars each day and always tries to sell an extended warranty on each of these cars. (In our opinion, most of these warranties are not good deals.) Let Y be the number of extended warranties sold; then $Y \le X$. The joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} c(x+1)(4-x)(y+1)(3-y) & x = 0,1,2,3; y = 0,1,2 \text{ with } y \le x \\ 0 & \text{elsewhere} \end{cases}$$

i) Find the value of c.

(3 marks)

ii) find the marginal pdf of X and Y

(4 marks)

iii) Are the X and Y independent

(1 mark)

QUESTION THREE (20 MARKS)

a) The joint pdf of a bivariate random variable (X,Y) is given by

$$f(x,y) = \begin{cases} \frac{1}{-e} - x/ye^{-y}, & x > 0, & y > 0 \\ 0, & otherwise \end{cases}$$

i) Show that f(x, y) is a probability density function.

(4 marks)

ii) Find P(X>1|Y=y).

(5 marks)

b) Let the moment of a discrete random variable X be given by

$$E(X^k)=0.8,$$

$$k = 1, 2, \dots \dots \dots$$

Find the moment generating function of X.

(4 marks)

c) Find the variance covariance matrix for the two random variables X_1 and X_2 when the joint probability distribution $P(X_1, X_2)$ is represented by the entries in the table below

(7 marks)

X_1	0	1	$P(X_1)$
X_2			
-1	0.4	0.06	0.3
0	0.16	0.14	0.3
1	0.40	0.00	0.4
P(X ₂)	0.8	0.20	1

QUESTION FOUR (20 MARKS)

a) If the independent random variables X and Y are distributed as N(0,1), set U=X+Y, V=X-Y.

i) Determine the pdfs of U and V.

(6 marks)

ii) Show that U and V are independent

(3 marks)

iii) Calculate the probability that U<0 and V<0

(4 marks)

b) State and prove the Bonferroni's inequality

(7 marks)

QUESTION FIVE (20 MARKS)

a) Let X_1 , X_2 , and X_3 be independent random variables, each taking values 1 with probabilities 1/2. Define random variables Y_1 , Y_2 , and Y_3 by

$$Y_1 = X_1X_2, Y_2 = X_1X_3, Y_3 = X_2X_3$$

Show that any two of these new random variables are independent but that Y_1 , Y_2 , and Y_3 are not independent. (6 marks)

b) Let $X' = (x_1, x_2, x_3)$ have multivariate normal density given by

$$f(x) = Cexp\left\{-\frac{1}{2}(3x_1^2 + x_2^2 + 5x_3^2 - x_1x_2 - 3x_2x_3)\right\}$$

Determine

i) Covariance matrix Σ

(5 marks)

ii) Marginal density of x_1x_3

(5 marks)

Conditional density of x_1 given $x_2 x_3$.

(4 marks)

