

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, **BACHELOR OF EDUCATION (SCIENCE) AND BACHELOR OF EDUCATION** (ARTS)

SMA 306: COMPLEX ANALYSIS I

DATE: APRIL 12, 2018

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS:

ES	TION ONE (30 MARKS)	
a)	Simplify $\frac{(\cos 4\theta + i \sin 4\theta)(\cos 3\varphi + i \sin 3\varphi)}{(\cos \theta - i \sin \theta)(\cos 2\varphi - i \sin 2\varphi)}$	(2 marks)
b)	Express $z = -\sqrt{3} - i$ in polar form.	(3 marks)
c)	State the conditions necessary for a complex function to be continuous at point $z = z$	
		(2 marks)
d)	State De Moivre's theorem and hence evaluate z^5 given $z = 1 + i\sqrt{3}$	(3 marks)
e)	Show that $f(z) = e^z$ is a periodic function with period $2k\pi i$.	(4 marks)
f)	Show that $\cos^{-1} z = -i \ln(z + \sqrt{(z^2 - 1)})$	(4 marks)
g)	Use Cauchy Integral formular to evaluate $\oint_c \frac{e^{2z}}{(z+1)^4} dz$ given C: $ z = 3$	(3 marks)
h)	Expand $\frac{1}{1+z}$ in a Taylor's series about point $z = -2i$.	(4 marks)
i)	Show that $\lim_{z \to i} \frac{z^2 + 1}{z^6 + 4} = \frac{1}{3}$	(2 marks)
j)	Evaluate $(2+i)^{1+i}$	(3 marks)

a) Evaluate the following limits

$$\lim_{z \to 2i} \frac{(2z+3)(z-1)}{z^2 - 2z + 4}$$

(3 marks)

- b) Find all the solutions of the equation $z^4 + 1 = 0$. (6 marks) c) Evaluate $\int_{(1,3)}^{4,5} (2y + x^2) dx + (3x - y) dy$ along the straight line from $z_1 = 1 + 1$ $3i \ to \ z_2 = 4 + 5i$. (7 marks) d) Write the number $z = \sqrt{2}e^{i\frac{7\pi}{4}}$ in Cartesian form after sketching its position. (4 marks) **QUESTION THREE (20MARKS)** a) Show that the function $U(x, y) = e^{-y} \sin x$ is harmonic and hence find its harmonic conjugate V(x, y). (7 marks) b) Evaluate $\frac{3+i^5-i^{11}+i^{13}}{i^4+i^9+i^{17}}$ (4 marks) c) Use the Cauchy's integral to evaluate the integral $\oint_c \frac{z+1}{z^4+2iz^3}$ where C is circle such that |z| = 1. (6 marks) d) Find the residue of $f(z) = \frac{1}{z^3 (1-z)^3}$ (3 marks) **QUESTION FOUR (20 MARKS)** a) Use the residue theorem to calculate $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$ in a unit circle. (7 marks) b) Find the image of the unit square in the z plane under transformation f(z) = Bz + Cwhere B = 3 + 4i and C = 2 + 3i. (4 marks) c) Express $x^2 + y^2 = 25$ in terms of $z\overline{z}$ where z = x + iy. (4 marks) d) Identify the singularities and hence compute the residues of the function $f(z) = \frac{1}{z^2(z^2+3z+2)}$ at each of its poles. (5 marks) **QUESTION FIVE (20 MARKS)** a) Evaluate the contour integral ∮_c z²dz along the path c from -1 +i to 5+3i compared of the line segments the first from -1 +i to 5+i and the second from 5 +i to 5+3i. (9 marks)
 - b) Find the Laurent series of the function $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z = 1, hence name the singularity and the region of convergence. (6 marks)
 - c) Let F be analytic in simply connected domain D. Prove that if C is any closed curve in D then $\oint_C F(z)dz = 0$ (5 marks)

--END---

