CHUKA

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF APPLIED COMPUTER SCIENCE

ACSC 271/ACMP 203: MATHEMATICAL METHODS FOR COMPUTER SCIENCE

STREAMS: B.Sc (ACSC)
TIME: 2 HOURS
DAY/DATE: THURSDAY 7/12/2017
8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE (COMPULSORY) and any other TWO Questions.
- Adhere to the instructions on the answer booklet.

QUESTION ONE [30 MARKS]

(a) Obtain the domain of the function $f(x)=\frac{1}{x^{2}-4}$
[3 Marks]
(b) Find the limit of the function $f(x)=\frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}$ as $x \rightarrow 1$
[4 Marks]
(c) Obtain the gradient of the function $f(x)=\frac{2}{x}$ from first principles.
[4 Marks]
(d) Find the gradient of the function $f(x)=y=2^{x}$ at $\mathrm{x}=0$
[4 Marks]
(e) Obtain $\frac{d y}{d x}$ for the function $y=\sin ^{-1}(3 x+1)$
[4 Marks]
(f) Solve the differential equation $\frac{d y}{d x}=\frac{x}{x+1}$
(g) Solve the differential equation below

$$
\begin{gathered}
x+2 y=1 \quad \text { by row reduction } \\
-2 x-3 y=2
\end{gathered}
$$

[3 Marks]
(h) Find the angle between the vectors $\quad \underset{\sim}{a}=3 i-2 j+4 k$ and $\quad \underset{\sim}{b}=-4 i+3 j-2 k[4$ Marks]

ACSC 271/ACMP 203

QUESTION TWO

(a) Obtain the eigen values and aigen vectors of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$
[11 Marks]
(b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{!}}$is convergent using the ratio test.
[4 Marks]
(c) Using the ratio test, prove that the sense $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{4}}$ is divergent.
[5 Marks]

QUESTION THREE

(a) Calculate the area of the triangle PQR with vertices $P(1,2,0) \quad Q(3,0,-3)$ and $R(5,2,6)$ by the cross product.
(b) Find the value of t for which the vectors $\underset{\sim}{a}=t i-5 j+2 k$ and $b=i+4 j-t k$ are orthogonal.
(c) Test whether the differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ is exact hence solve it.
[5 Marks]
(d) Solve the system below by row reduction

$$
\begin{gathered}
2 x_{1}+x_{2}+x_{3}=1 \\
-x_{1}+2 x_{2}-3 x 3=3 \\
x_{1}+3 x_{2}-2 x 3=4
\end{gathered}
$$

[5 Marks]
(e) Solve the differential equation $\frac{d y}{d x}=3 x^{2}+5$ given that $y(0)=10$

QUESTION FOUR

(a) Find the inverse of the matrix A by the Cayley Hamilton theorem
$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$
[8 Marks]
(b) Approximate $\int_{1}^{2} \frac{d x}{x}$ by the mid point rule with 5 strips and obtain the actual error correct to 4 decimal points.
[8 Marks]
(c) Obtain the derivative $\frac{d y}{d x}$ of the function $y^{2}+x^{5}=2$
[4 Marks]

QUESTION FIVE

(a) Find the domain of the function $f(x)=\sqrt{x^{2}-x-6}$
[4 Marks]
(b) Evaluate lim

$$
\sqrt[3]{\frac{x^{2}+3}{27 x^{2}-1}}
$$

[3 Marks]

$$
x \rightarrow \bowtie
$$

(c) Evaluate $\frac{d y}{d x}$ of $f(x)=\sqrt[3]{3 x^{3}+7 x}$
[3 Marks]
(d) Find the equation of the normal to the -curve $y=x^{2}-6 x+5$ at the point $x=1$ [4 Marks]
(e) Evaluate $\frac{d y}{d x}$ of $\tan ^{-1}(\operatorname{In} x)$
[3 Marks]
(f) Find the area of the parallelogram spanned by the given vectors $\underset{\sim}{a}=i+2 j-k$, and $\underset{\sim}{b}=2 i+3 i+K$

