ACSC 271/ACMP 203

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF APPLIED COMPUTER SCIENCE

ACSC 271/ACMP 203: MATHEMATICAL METHODS FOR COMPUTER SCIENCE

STREAMS:	B.Sc (ACSC)	TIME: 2 HOURS
DAY/DATE:	THURSDAY 7/12/2017	8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE (COMPULSORY) and any other TWO Questions.
- Adhere to the instructions on the answer booklet.

QUESTION ONE [30 MARKS]

(a) Obtain the domain of the function
$$f(x) = \frac{1}{x^2 - 4}$$
 [3 Marks]
(b) Find the limit of the function $f(x) = \frac{\sqrt{3+x} - \sqrt{5-x}}{x^2 - 1}$ as $x \to 1$ [4 Marks]
(c) Obtain the gradient of the function $f(x) = \frac{2}{x}$ from first principles. [4 Marks]
(d) Find the gradient of the function $f(x) = y = 2^x$ at $x = 0$ [4 Marks]
(e) Obtain $\frac{dy}{dx}$ for the function $y = \sin^{-1}(3x + 1)$ [4 Marks]

(f) Solve the differential equation
$$\frac{dy}{dx} = \frac{x}{x+1}$$
 [4 Marks]

(g) Solve the differential equation below

$$x + 2y = 1$$
 by row reduction
 $-2x - 3y = 2$ [3 Marks]

(h) Find the angle between the vectors $a_{\sim}^{a} = 3i - 2j + 4k$ and $b_{\sim}^{b} = -4i + 3j - 2k[4 \text{ Marks}]$

ACSC 271/ACMP 203

QUESTION TWO

(a) Obtain the eigen values and aigen vectors of the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ [11 Marks]

(b) Show that the series
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 is convergent using the ratio test. [4 Marks]

(c) Using the ratio test, prove that the sense $\sum_{n=1}^{\infty} \frac{2^n}{n^4}$ is divergent. [5 Marks]

QUESTION THREE

- (a) Calculate the area of the triangle PQR with vertices P(1, 2, 0) Q(3, 0, -3) and R(5, 2, 6) by the cross product. [5 Marks]
- (b) Find the value of t for which the vectors $a_{\sim}^{a} = ti 5j + 2k$ and b = i + 4j tk are orthogonal.
- (c) Test whether the differential equation $(e^y + 1) \cos x dx + e^y \sin x dy = 0$ is exact hence solve it. [5 Marks]
- (d) Solve the system below by row reduction

$$2x_1 + x_2 + x_3 = 1$$

-x_1 + 2x_2 - 3x_3 = 3
x_1 + 3x_2 - 2x_3 = 4 [5 Marks]

(e) Solve the differential equation $\frac{dy}{dx} = 3x^2 + 5$ given that y(0) = 10

QUESTION FOUR

(a) Find the inverse of the matrix A by the Cayley Hamilton theorem

[1	2	-21	
A= 1	1	1	[8 Marks]
L1	3	-1	

- (b) Approximate $\int_{1}^{2} \frac{dx}{x}$ by the mid point rule with 5 strips and obtain the actual error correct to 4 decimal points. [8 Marks]
- (c) Obtain the derivative $\frac{dy}{dx}$ of the function $y^2 + x^5 = 2$ [4 Marks]

QUESTION FIVE

(a) Find the domain of the function $f(x) = \sqrt{x^2 - x - 6}$ [4 Marks]

(b) Evaluate
$$\lim_{x \to \bowtie} \sqrt[3]{\frac{x^2+3}{27x^2-1}}$$
 [3 Marks]

(c) Evaluate
$$\frac{dy}{dx}$$
 of $f(x) = \sqrt[3]{3x^3 + 7x}$ [3 Marks]

(d) Find the equation of the normal to the –curve $y = x^2 - 6x + 5$ at the point x = 1 [4 Marks]

(e) Evaluate
$$\frac{dy}{dx}$$
 of $tan^{-1}(\ln x)$ [3 Marks]

(f) Find t	the area	of the	parallelogram	spanned	by the	given	vectors	$a_{\sim}^{a} = i + 2j - k_{j}$ and
$\sum_{i=1}^{b} = 2i$	+ 3i + K							[3 Marks]