JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

COMPUTER SCIENCE

DIGITAL LOGICS

TIME: 2HRS

Q1
a) Determine the binary equivalent of the decimal number $368(3 \mathrm{mks})$
b) Use logic gates to realize the Boolean expression

$$
\begin{gathered}
\mathrm{Y}=\mathrm{ABCD}+\bar{A} \bar{C} \\
(3 \mathrm{mks})
\end{gathered}
$$

c) Simplify the Boolean expression

$$
\bar{A} \cdot \mathrm{~B}+\mathrm{A} \cdot \bar{B}+\mathrm{AB} \quad(4 \mathrm{mks})
$$

d) Realize the D flip-flop using the RS flip-flop(7mks)
e) What is a register? Give two examples of registers and one application in the field of computing(4mks)
f) Complete the following table of equivalent values (9 mks)

Binary	Octal	Decimal	Hexadecimal
		11.1875	
11101.11111101			
			$1 B .4 \mathrm{C}$

Q2
a) Obtain the two's complement of the number 1101101 (3mks)
b) Simplify algebraically:

$$
\mathrm{x}=\mathrm{BC}+(\bar{A}+\bar{B})(\mathrm{A}+\mathrm{C}) \quad(4 \mathrm{mks})
$$

c) Implement the following using NOR gates only

$$
X=(A+B)(B+C)(A+C) \quad(4 m k s)
$$

d) A combinational circuit has 3 inputs A, B, C and output F. F is true for the following input combinations:

- A is false , B is true
- A is false, C is true
- A, B, C are false
- A, B, C are true
i) Write the truth table for $\mathrm{F}(3 \mathrm{mks})$
ii) Draw the Karnaugh map and simplify the expression (3mks)
iii) Draw logic circuit diagram (3mks)

Q3
a) Convert the binary number 10110 to gray code(3mks)
b) Implement $x=A B+B C+A C$ using NAND gates only (4mks)
c) With the relevant logic diagram and truth table explain the working of two input EX-OR gate (7 mks)
d) Distinguish combinational logic circuits from sequential circuits (2mks)
e) Add 648 and 487 in BCD code (4 mks)

Q4
a) Convert the decimal number 430 to express- 3 code (2 mks)
b) Convert the decimal number 82.67 to its binary and hexadecimal equivalent(5 mks)
c) Design a combinational circuit that converts a 4bit binary number. Implement with exclusive OR gates only. (13mks)

Q5

a) Find the hex sum of $(93)_{16}+(D E)_{16}$ (3mks)
b) Express the function $f(A, B, C)=A B+B C+A B C+A C$ in a Canonical sum of Products form (5 mks)
c) Define a counter. Give any two characteristics of counters? (5 mks)
d) Realize a JK flip-flop using a D flip-flop(7mks)

