JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

COMPUTER SCIENCE

VECTOR ANALYSIS

TIME: 2hrs

Q1

a) Determine \mathbf{P} such that: $\bar{A}=2 \hat{\imath}+\hat{\jmath}+4 \hat{k}, \quad \bar{B}=3 \hat{\imath}+2 \hat{\jmath}+P \hat{k}$, $\bar{C}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}$ are coplanar (4mks)
b) Find the unit tangent \bar{T}, the curvature K and the unit normal \bar{N} for the curve $\vec{r}=-(3 \sin 2 t) \hat{\imath}-(3 \cos 2 t) \hat{\jmath}$
c) If $\emptyset=3 x^{2} y^{2} z$ find divgrad $\emptyset \quad$ (4 mks)
d) Prove that $\nabla^{2}(\ln r)=\frac{1}{r^{2}}$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \quad(6 \mathrm{mks})$
e) Find the work done by moving a particle once around a circle C in the xy plane if the circle has centre origin and radios 3 and the force field is given by

$$
\vec{F}=(2 x-y+z) \hat{\imath}+\left(x+y-z^{2}\right) \hat{\jmath}+(3 x-2 y+4 z) \hat{k}
$$

(5mks)
f) Evaluate the integral $\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} \int_{z=0}^{\sqrt{a^{2}-x^{2}}} d z d y d x \quad$ (4mks)

Q2
a) Determine the unit tangent vector to any point on the curve described by the parametric equations $x=t^{2}+1, y=4 t+3$, $z=2 t^{2}+6 t$ at the point $t=2 \quad$ (6 mks)
b) Find the curvature and unit normal to the space curve $\vec{r}=(t+1) \hat{\imath}+\frac{\sqrt{6}}{3} t^{3} \hat{\jmath}+\frac{3}{5} t^{5} \hat{k} \quad$ at $\quad t=1 \quad$ (14mks) Q3
a) If $\vec{F}=x y \hat{\imath}-z \hat{\jmath}+x^{2} \hat{k}$ and C is the curve $x=t^{2} y=2 t z=t^{2}$ from $t=1$ to $t=2$, evaluate the integral $\oint_{C} \vec{F} \times d \vec{r} \quad$ (5 mks)
b) Evaluate $\iint_{S} \vec{B} \cdot \hat{n} d s$ where $\bar{B}=z \hat{\imath}+x \hat{\jmath}+3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=49$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=6$ (10 mks)
c) Let $\vec{F}=2 x z \hat{\imath}-x \hat{\jmath}+y^{2} \hat{k}$. Evaluate $\iiint_{v} \vec{F} d v$ where V is the region bounded by the surfaces $x=0, x=1, y=0, y=6$ $z=x^{2}$ and $z=9 \quad$ (5mks)

Q4

a) Prove that the cylindrical coordinate system is orthogonal (6mks)
b) State the Green's theorem hence verify the theorem in the plane for $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y$ where C is a closed curve of region bounded by $x=y^{2} \quad y=x$ (14mks)

