

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2017/2018

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

CITY CAMPUS -REGULAR

CIT 103: MATHEMATICS FOR INFORMATION TECHNOLOGY

Date: 22nd February, 2018

Time: 12.00 - 3.00pm

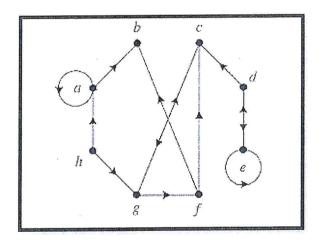
INSTRUCTIONS:

Answer Question ONE and any other TWO.

MASENO UNIVERSITY

ISO 9001:2008 CERTIFIED

QUESTION 1 (30 Marks) - COMPULSORY


- a) Briefly define the following terms
 - i) An injective (one to one) function
 - ii) Cartesian product of two sets
 - iii) Proposition in propositional logic
 - iv) Range of a function

(8 Marks)

- b) Let f and g be the functions $\mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 2 and $g(x) = 1/(x^2 + 1)$ respectively. Determine
 - i) $f \circ g(x)$
 - ii) $g \circ f(x)$

(6 Marks)

c) A relation R on the set $A = \{a, b, c, d, e, f, g, h\}$ has the following directed graph

- i) List the elements of R
- ii) List the elements of $R \circ R$
- iii) Draw the directed graph of the relation $R \circ R$

(12 Marks)

d) Differentiate the following expression with respect to x: $y = (3x^2 - 2)^2$ and determine the value of x when

$$\frac{dy}{dx} = 0$$

QUESTION 2 (20 Marks)

a) State whether the graph shown in Figure 1 below is the graph of a function

(1 Marks)

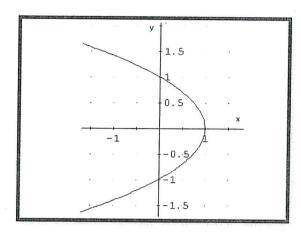


Figure 1

b) Function f is defined by $f(x) = 2x^2 + 6x - 3$ determine f(-2) and f(x - 2)

(5 Marks)

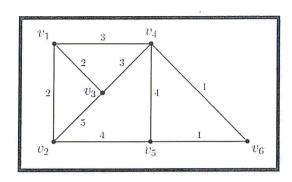
c) Functions h and g are defined by h(x) = -7x - 5 and g(x) = 10x - 12, find (h + g)(x)

(5 Marks)

- d) Find the domain of the function $f(x) = \sqrt{(-x^2 x + 2)}$ (2 Marks)
- e) Find the range of the function $f(x) = -x^2 6$ (2 Marks)
- f) Functions g and h are defined by $g(x) = \sqrt{x-1}$ and $h(x) = x^2 + 1$. Find the composite function $g \circ h(x)$ hence determine $g \circ h(-5)$ (5 Marks)

QUESTION 3 (20 Marks)

- a) Construct a truth table for the compound proposition $(p \land \neg q) \rightarrow (r \lor q)$. Is the compound proposition a tautology? (6 Marks)
- b) Let $A = \{a, b, c, d\}$ and let $R = \{(a, b), (b, c), (c, d), (d, b)\}$ be a relation on A.
 - i) Draw the directed graph representing *R*


(2 Marks)

ii) Determine the transitive closure R^* of R

(3 Marks)

total weight of the minimal spanning tree? Draw the minimal spanning tree.

(5 Marks)

QUESTION 5 (20 Marks)

a) Consider the function f(x) = 2x + 1. By differentiating from first principles show that f'(x) = 2 Hint: Calculate the following limit: (5 Marks)

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

b) For the following functions, find the derived functions

i)
$$y = \frac{4}{3}x^3$$
 (2 Marks)

ii)
$$y = \frac{x^2 + 3x + 2}{x}$$
 (3 Marks)

c) Consider the quadratic function $f(x) = 3x^2 + 2x + 4$. Calculate (5 Marks)

$$\int_{-1}^{2} f(x) dx$$

d) Consider the derivative f'(x) = x + 3. Find f(x) using the fact that the point (0,1) lies on the curve. (5 Marks)