

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

(MMUST)

UNIVERSITY EXAMINATIONS

2018/2019 ACADEMIC YEAR

FOURTH YEAR MAIN EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE (CHEMISTRY)/BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE:

SCH 440

COURSE TITLE: ELECTROCHEMISTRY

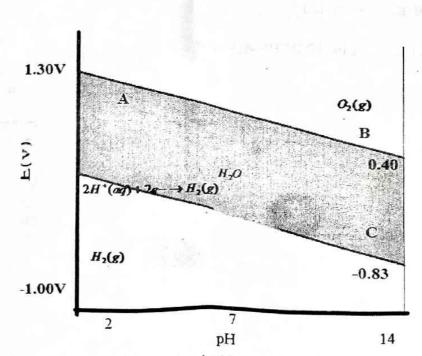
DATE:

Monday 28th January 2019

TIME: 12.00 - 2.00 pm

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours


Answer ALL questions

1. (a) Define the following electrochemical terms:

(6 marks)

- I. Molar Conductivity:
- II. Kohlrausch Law of Independent migration
- III. Reference electrode
- IV. Electrode of the first kind
- V. Working electrode
- VI. Liquid junction potential
- (b)
- I. Using appropriate diagrams, describe the electrical double layer characteristics of an electrode in solution (6 Marks)
- II. Explain how the following factors affect the transport of dissolved species to and from the electrode surface (6 marks)
 - (i) Mass transfer Migration
 - (ii) Electron transfer
 - (iii) Chemical reactions
 - (iv) Other surface reactions

2. (a)

The graph above shows the electrochemical behaviour of water at various pH values

(i) Write the possible chemical equations occurring at points A, B and C.

(6 marks)

- Draw the cyclic voltamograms for electrochemical processes responsible for (ii)
 - 1. Evolution of oxygen
 - 2. Evolution of hydrogen

(6 marks)

- (b). Describe how oxygen is removed from electrolyte solutions during normal (2 mark) electrochemical processes?
- (c) Using appropriate diagrams, discuss the effects of:
 - 1. stirring the electrolytic solution during
 - 2. Increasing the scan rate during

(4 marks)

Question Three

(a) The voltammogram for 20.00 mL of solution that was 3.65×10^{-3} M in Cd²⁺ gave a wave for that ion with a limiting current of 31.3µA.

Calculate the percentage change in concentration of the solution if the current in the limiting current region were allowed to continue for

> I. 5 min.

II. 10 min.

III. 30 min. (6 marks)

(b) (i) Diferentiate between an Electroltic Cell and a Danieli Cell (4 marks)

An electrochemical cell has the following reaction taking place:

 $Mg(s) + 2Ag^{+}(0.0002M) \rightarrow Mg^{2+}(0.260M) + 2Ag(s)$

Calculate its $E^{(cell)}$ if $E^{\Theta}_{(cell)} = 3.17 \text{ V}$.

(2 marks)

Determine the number of moles of electrons transferred (iii)

(2 marks)

Calculate the non-standard cell potential, Ecell, using the Nernst equation (iv)

(4 marks)

Question Four

(a) Describe the theory behind the ion selective electrode

(4 marks)

(b) What are the limitations of a glass electrode in pH measurements

(4 marks)

(c) A lithium ion-selective electrode prepared from snake skin gave the potentials shown below for four standard solutions of LiCl and 2 samples of unknown concentrations.

Potential vs SCE, mV
+1.0
- 30.0
₌ -60
- 138.0
-48.5
-75.3

I. Draw a calibration curve of the electrode potentials vs log a_{Li} (5 marks)

II. Determine the concentration of the unknowns (2 marks)

III. Determine if the electrode follows the Nerstian equation (2 marks)