

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE (CHEMISTRY, INDUSTRIAL CHEMISTRY, BIOCHEMISTRY)

BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE:

SCH 130

COURSE TITLE:

ORGANIC CHEMISTRY I

DATE: Thursday, 7TH February 2019

TIME: 12.00 pm - 2.00 pm

INSTRUCTIONS TO CANDIDATES

Answer ALL questions

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 6 Printed Pages. Please Turn Over.

QUESTION ONE (17 Marks)

a) Give a brief description of the unique properties of carbon

4 marks

b) Explain the following observations

6 marks

- i) The element carbon forms a very large number of compounds
- ii) Propan-1-ol is soluble in water but 1-chloropropane is insoluble
- iii)Butan-1-ol and ethoxyethane have the same relative molecular mass but very different boiling points, 117°C and 35°C respectively
- c) A laboratory technician is supplied with three unlabelled bottles containing an alcohol, an aldehyde and an alkane respectively of comparable molecular mass. She takes a sample from each bottle and labels them P, Q and R. In order to identify each sample, she determines the boiling point of each under the same conditions. The results are shown in the table below.

Sample	Boiling Point (°C)
P	36
Q	76
R	118

From this information, select the letters (P, Q or R) representing an alkane, aldehyde and alcohol. Explain

3 marks

d) Provide the systematic names for the compounds whose structures are given below 4 marks

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

QUESTION TWO (18 Marks)

a) The following molecules only have a single functional group. Identify to which class of organic compounds each molecule belongs based on its functional group

4 marks

b) Differentiate between constitutional isomers and stereoisomers

2 marks

c) Give the structures and names of any four constitutional isomers of C₆H₁₄

4 marks

- d) By giving relevant example/illustration in each case, explain the difference between heterolytic bond fission and hemolytic bond fission

 4 marks
- e) Using chlorination of methane as an example, show the three steps involved in the chain reaction.

 4 marks

QUESTION THREE (18 Marks)

a) Give two differences between organic and inorganic compounds

2 marks

b) Halothane, a well known general anesthetic has the structural formula shown below:

i) Give the systematic name of the halothane

1 mark

- ii) A related compound bromochlorodiflouromethane is sold under the name Halon which is used in automatic fire extinguisher systems. State with an explanation whether Halo, or halothane has the highest boiling point 2 marks
- c) Draw four alkene isomers for the organic compound C₄H₈

4 marks

- d) Identify and explain why only two compounds in (c) above are cis and trans (geometric) 2 marks isomers.
- e) Tamoxifen and clomiphene have similar structures but very different medical uses. 2 marks Explain whether the alkene double bond in each is E or Z

The structure of a molecule of an organic compound, threonine, is shown below.

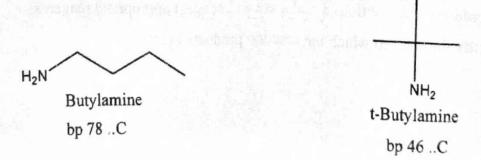
An alcohol functional group has been identified in the threonine molecule above.

- i) Identify and name two other functional groups on the threonine molecule above 2 marks
- ii) Classify the alcohol functional group as primary, secondary, or tertiary 2 marks
- iii) Explain how you classified the alcohol group.

QUESTION FOUR (17 Marks)

a) The following is the structure of limonene, the chemical component of oranges that is partly responsible for their citrus scent. The following is the structure of limonene, a compound found in lemons.

i) What is the molecular formula of limonene?

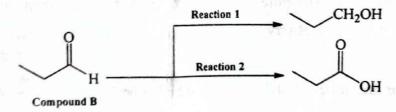

1 mark

- ii) Draw the structure of limonene and classify each of the carbons primary (1°), secondary (2°), tertiary (3°), or quaternary (4°).
- iii) Draw the chemical structure of the compound formed when limonene reacts with hydrogen in the presence of a catalyst.

 2 marks
- iv) Draw the chemical structure of the compound formed when limonene reacts with bromine. What would you observe?

 2 marks
- b) Account for the fact that butylamine has a higher boiling point than t-butylamine

2 marks



c) Give products for the reactions given below, and where applicable identify the major product

4 marks

ii)
$$\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4}$$
?

d) Compound B undergoes the following reactions

i) To what class of compounds does compound B belong?

- 1 mark
- ii) Determine what reactions 1 and 2 are and suggest appropriate reagents.
- 1 mark

iii) Identify the class to which the reaction products belong

1 mark