

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2017/2018

FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

CITY CAMPUS

CIT 106: LINEAR ALGEBRA

Date: 16th June, 2018

Time: 8.00 - 11.00am

INSTRUCTIONS:

Answer Question ONE and any other TWO.

QUESTION ONE (30 MARKS)

a) Differentiate between vector space and a vector subspace.

(4 marks)

b) Define the following terms as used in Algebra

(6 marks)

- i. Adjoint matrix
- ii. Linearly dependent vectors
- iii. Spanning vectors
- c) Show that the points A (-2,-2), B (2, 1) and C (10, 7) are collinear. (4 marks)
- i. State the ratio theorem.

 ii. Use the ratio theorem to find the position vector of point R which divides PQ externally in the ratio 5:2.

 (4 marks)
- e) Use the Cramer's Rule to solve the following system of equations;

$$x_1 + 2x_2 + 3x_3 = 3$$

 $2x_1 + 4x_2 + 5x_3 = 4$
 $3x_1 + 5x_2 + 6x_3 = 8$ (6 marks)

f) Find the Eigen values and Eigen vectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.

(8 marks)

QUESTION TWO (20 MARKS)

Use the Gaus-Jordan method to solve the following system of equations;

$$x_1 + 2x_2 + x_3 = 6$$

 $2x_1 + 3x_2 + 4x_3 = 12$
 $3x_1 + x_2 + 2x_3 = 7$ (7 marks)

b) Let M₂₂ be the collection of 2x2 matrices be a vector space. Show that the set W of all 2x2 matrices having zeros on the main diagonal is a subspace of M₂₂.

(4 marks)

- i. Determine whether $\overrightarrow{v_1} = (1, 1, 2), \overrightarrow{v_2} = (1, 0, 1)$ and $\overrightarrow{v_3} = (2, 1, 3)$ span \mathbb{R}^3 . (5 marks)
 - ii. Show that the vectors $\vec{i} = (1, 0, 0)$, $\vec{j} = (0, 1, 0)$, and $\vec{k} = (0, 0, 1)$ span \mathbb{R}^3 . (4 marks)

QUESTION THREE (20 MARKS)

- a) Differentiate between a diagonal matrix and an identity matrix. (4 marks)
- b) Let $\vec{a} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 15 \\ 3 \end{pmatrix}$, and $\vec{c} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$. Express \vec{a} as a linear combination of \vec{b} and \vec{c} . (4 marks)
- c) i. Find the inverse of $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$.
 - ii. Use the results in (i) above solve the following system of equations;

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + x_3 = 1$ (12 marks)
 $x_1 + 2x_2 = 2$

QUESTION FOUR (20 MARKS)

- a) Define the following terms as used in Algebra
 - i. A matrix
 - ii. Linearly independent vectors
 - iii. A symmetric matrix
 - iv. An anti-symmetric matrix

(8 marks)

- b) Use the ratio theorem to find the position vector of point R which divides PQ internally in the ratio 4:3. (3 marks)
- i. Show that the vectors; $\overrightarrow{v_1} = (1, 0, 1, 2), \overrightarrow{v_2} = (0, 1, 1, 2)$ and $\overrightarrow{v_3} = (1, 1, 1, 3)$ are linearly independent.
 - ii. Show that the vectors;

$$\vec{v}_1 = (1, 2, -1), \ \vec{v}_2 = (1, 2, -1) \text{ and } \vec{v}_3 = (1, -2, 1) \text{ are linearly dependent.}$$
(9 marks)

QUESTION FIVE (20 MARKS)

- a) Given that $\vec{a}=(-1,\ 1,\ 3)$ and $\vec{b}=(7,\ -2,\ 2)$, find the angle between \vec{a} and \vec{b} . (6 marks)
- b) Given that the vectors $\vec{a} = (1, -6, 1)$ and $\vec{b} = (5, 2, \beta)$ are perpendicular, find the value of β. (4 marks)
- Given that the vectors $\vec{a} = (1, 4, -2)$ and $\vec{b} = (2, -3, -1)$, find the cross product of \vec{a} and \vec{b} . (4 marks)
- d) Find the Eigen values and Eigen vectors of the matrix $A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$.

 (6 marks)

END