(a) Distinguish the following terms as used in stochastic Processes

INSTRUCTIONS: Answer question ONE and Any other TWO questions

- i. Stochastic Process and Stationary Process
- ii. Discrete time process and Continuous time process
- iii. States of a process and State space of a process
- (b) For the following transition matrix, draw a transition diagram to show the
 - transition probabilities that the matrix describes [4 Marks] $E_1 \quad E_2 \quad E_3$

$$P = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} \begin{pmatrix} 0 & p_{12} & 0 \\ 0 & p_{22} & p_{23} \\ p_{31} & 0 & p_{33} \end{pmatrix}$$

DATE: APRIL, 2017

QUESTION ONE (30 MARKS)

(c) Suppose there are two markets products of brand A and Brand B respectively. Let each of these brands have exactly 50% of the total market share in the same period and let the market be of a fixed size. The transition matrix is given by the matrix:

То

$$From \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}$$

Determine the market share in the steady state [4 Marks] How long will it take to reach the equilibrium state? [5 Marks]

1

UNIVERSITY EXAMINATIONS 2016/2017 ORDINARY EXAMINATION FOR BSC ACTUARIAL SCIENCE BAS2206 STOCHASTIC MODELS FOR ACTUARIES 1 (EVENING/ WEEKEND)

TIME: 2 HOURS

[6 Marks]

(d) Define a Poisson Process, Stating its properties	[5 Marks]
(e) Let X be a discrete random variable with probability generating $G_X(s) = \frac{s}{r}(3s^2 + s + 1).$	function (PGF)
i. Find the distribution of X	[5 Marks]
ii. Hence or otherwise show that X is a pdf.	[l mark]

[4 Marks]

SECTION B

QUESTION TWO (20 MARKS)

(a) Define the following as used in stochastic processes

i.	Periodicity	[3 Marks]
ii.	Ergodicity	[3 Marks]
iii.	Communicate	[3 Marks]

(b) **Let**

E_1 $\frac{1}{4}$ 0 0 0 0	E_2 0 1 0 1 0 1 -	$ \frac{E_3}{\frac{1}{4}} \frac{1}{\frac{3}{3}} 0 0 $	$ \frac{E_4}{1} \frac{1}{4} 0 \frac{1}{3} \frac{1}{1} \frac{1}{4} $	E_{1} $\frac{1}{4}$ 0 $\frac{1}{3}$ 0 1 0	5
 L •	4	-	4	2	

i.	Draw a transition diagram to represent the transition matrix.	[4 Marks]
ii.	Re-arrange the matrix to be of the form	
P	$ = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix} $	
		[3 Marks]

iii. Find P^2 , hence P^n

QUESTION THREE (20 MARKS)

- (a) Discuss any three Practical importance of stochastic process. [8 Marks]
- (b) A small town with one hospital has two ambulances to supply ambulance service. Requests for ambulances during non-holiday weekend averages 0.8 per hour and tend to be Poisson distributed. Travel and assistance time averages one hour per call and follows an exponential distribution.
 - i. What is the utilization of ambulances?
 - ii. On an average, how many requests are waiting for ambulances?
 - iii. How long will a request have to wait for ambulances?

iv. What is the probability that both ambulances are sitting idle at a given point in time? [12 Marks]

QUESTION FOUR (20 MARKS)

- (a) On January 1 of this year Bakery A had 40% of its local market while Bakery B and C had 40% and 20 % of the market share respectively. Based on a study by a market Research firm, the following facts were compiled: Bakery A retains 90% of its customers gaining 5% from B and 10% from C. Bakery B retains 85% of its customers while gaining 5% from A and 7% from C. Bakery C retains 83% of its customers and gains 5% of A and 10% of B's customers
 - i. Formulate a transition matrix for the three operators
 - ii. What will each bakery share be on January of next year
 - iii. what will each bakery share be in the long-run [12 Marks]
- (b) Discuss the Classification of stochastic processes giving examples. [8 Marks]

QUESTION FIVE (20 MARKS)

- (a) Define the term random walk as used in stochastic processes. [3 Marks]
- (b) List down the basic properties of a one dimensional wiener process. [6Marks]
- (c) A company rates every employee as below average, average or above average. Past performance indicates that each year 10% of the below average employees will raise their rating to average and 25% of the average employees will raise their rating to above average. On the other hand, 15% of the average employees will lower their rating to below average and 15% of the above average employees will lower their rating to average. Company policy prohibits changes from below average to above average, or conversely in a single year.
 - (i) Come up with the transition matrix to represent this information. [4 Marks]
 - (ii) Calculate the percentage of employees who will receive below average rating over the long-run. [7 Marks]