MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE AND APPLIED SCIENCES<br>DEPARTMENT OF APPLIED SCIENCES<br>UNIVERSITY ORDINARY EXAMINATION<br>2017/2018 ACADEMIC YEAR<br>EXAMINATION FOR MASTER OF SCIENCE IN STATISTICS<br>AMS 602: THEORY OF LINEAR MODELS<br>DURATION: 3 HOURS<br>DATE: $22^{\mathrm{ND}}$ AUGUST, 2018<br>TIME: 9.00 A.M. - 12.00 NOON

## Instructions to Candidates:

1. Answer Any Four questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.

## QUESTION ONE ( 25 Marks)

a) Distinguish between the following sets of terms
i. Random and fixed effects model
ii. Maximum likelihood estimation and Restricted maximum likelihood estimation
b) State and prove the Gauss - Markov theorem
c) A study was performed on wear of a bearing $y$ and its relationship to $x_{1}=$ oil viscosity and $x_{2}=$ load. The following data were obtained:

| $y$ | $x_{1}$ | $x_{2}$ |
| :---: | ---: | ---: |
| 1.93 | 1.6 | 8.5 |
| 2.30 | 1.8 | 8.2 |
| 1.72 | 2.2 | 10.6 |
| 0.91 | 4.3 | 12.1 |
| 1.13 | 3.3 | 13.3 |
| 1.25 | 4.2 | 11.2 |
| 2.25 | 2.3 | 9.6 |
| 1.45 | 3.4 | 10.5 |
| 1.94 | 3.1 | 11.7 |
| 1.52 | 3.8 | 9.3 |

i. Fit a multiple linear regression model to the data
ii. Test for significance of regression. Use $\alpha=0.05$.
iii. Compute $t$ statistics for each model parameter. What conclusions can you draw? Use $\alpha=0.05$.

## QUESTION TWO (25 Marks)

a) Describe the centred form of the multiple linear regression model
b) With the normality assumption, obtain maximum likelihood estimators of $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}^{\mathbf{2}}$
c) Illustrate the properties of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\sigma}}^{2}$ under the normal model
d) Explain how to perform regression model diagnostics
e) For the data below, perform a test of lack of fit on the simple linear regression model.

Use $\alpha=0.05$.

| $y$ | 1.5 | 8.9 | 3.9 | 7.2 | 7.1 | 6.9 | 1.9 | 1.5 | 7.8 | 6.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x$ | 3.1 | 3.2 | 2.8 | 2.7 | 2.5 | 3.2 | 3.3 | 3.5 | 2.8 | 2.9 |

## QUESTION THREE (25 Marks)

a) Consider the model: $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \quad \boldsymbol{E}(\boldsymbol{y})=\boldsymbol{X} \boldsymbol{\beta}, \quad \boldsymbol{\operatorname { c o v }}(\boldsymbol{y})=\boldsymbol{\Sigma}=\boldsymbol{\sigma}^{2} \boldsymbol{V}$ where $\boldsymbol{X}$ is full-rank and $\boldsymbol{V}$ is a known positive definite matrix, derive the estimators for $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}^{\mathbf{2}}$ (8 marks)
b) Given $\boldsymbol{X}=\left[\begin{array}{lll}1.0 & 1.0 & 1.3 \\ 1.0 & 1.1 & 2.8 \\ 1.0 & 1.2 & 3.3\end{array}\right], \boldsymbol{y}=\left[\begin{array}{l}4.5 \\ 6.8 \\ 2.4\end{array}\right]$ and $\boldsymbol{V}=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$, compute $\widehat{\boldsymbol{\beta}}$ and $\operatorname{cov}(\widehat{\boldsymbol{\beta}})$
c) Describe in detail how to perform hypothesis testing in multiple regression

## QUESTION FOUR ( 25 marks)

a) Explain the generalized linear model
b) Describe how to conduct multiple linear regression in R explaining the associated outputs (10 marks
c) Given the following data, fit the second-order polynomial regression model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{11} x_{1}^{2}+\beta_{12} x_{1} x_{2}+\beta_{22} x_{2}^{2}+\varepsilon
$$

| $\boldsymbol{y}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ |
| ---: | :--- | :--- |
| 26 | 1.0 | 1.0 |
| 24 | 1.0 | 1.0 |
| 175 | 1.5 | 4.0 |
| 160 | 1.5 | 4.0 |
| 163 | 1.5 | 4.0 |
| 55 | 0.5 | 2.0 |
| 62 | 1.5 | 2.0 |
| 100 | 0.5 | 3.0 |
| 26 | 1.0 | 1.5 |
| 30 | 0.5 | 1.5 |
| 70 | 1.0 | 2.5 |
| 71 | 0.5 | 2.5 |

## QUESTION FIVE ( 25 marks)

a) Show that if $\boldsymbol{y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, then $\widehat{\boldsymbol{\beta}}$ and $s^{2}$ have minimum variance among all unbiased estimators.
b) Illustrate the general linear hypothesis $H_{0}: \boldsymbol{C} \boldsymbol{\beta}=\mathbf{0}$, where $\boldsymbol{C}$ is a known coefficient matrix of rank $q \leq k+1$
c) Consider the model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\sum_{i=1}^{m} \boldsymbol{Z}_{\boldsymbol{i}} \boldsymbol{a}_{\boldsymbol{i}}+\boldsymbol{\varepsilon}$, where $\boldsymbol{X}$ is a known $n \times p$ matrix, the $\boldsymbol{Z}_{\boldsymbol{i}}$ 's are known $n \times r_{i}$ full rank matrices, $\boldsymbol{\beta}$ is $p \times 1$ a vector of unknown parameters, $\boldsymbol{\varepsilon}$ is an $n \times 1$ unknown random vector such that $E(\boldsymbol{\varepsilon})=\mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\varepsilon})=\sigma^{2} \boldsymbol{I}_{\boldsymbol{n}}$, and the $\boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{s}$ are $r_{i} \times 1$ unknown random vectors such that $E\left(\boldsymbol{a}_{\boldsymbol{i}}\right)=\mathbf{0}$ and $\operatorname{cov}\left(\boldsymbol{a}_{\boldsymbol{i}}\right)=\sigma_{i}^{2} \boldsymbol{I}_{\boldsymbol{r}_{i}}$. Furthermore, $\operatorname{cov}\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)=\mathbf{0}$ for $i \neq j$, where $\boldsymbol{O}$ is $r_{i} \times r_{j}$, and $\operatorname{cov}\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{\varepsilon}\right)=\mathbf{0}$ for all $i$, where $\boldsymbol{O}$ is $r_{i} \times n$. Show that $E(\boldsymbol{y})=\boldsymbol{X} \boldsymbol{\beta}$ and $\operatorname{cov}(\boldsymbol{y})=\boldsymbol{\Sigma}=\sum_{i=1}^{m} \sigma_{i}^{2} \boldsymbol{Z}_{\boldsymbol{i}} \boldsymbol{Z}_{\boldsymbol{i}}^{\prime}+\sigma^{2} \boldsymbol{I}_{\boldsymbol{n}} \quad$ (10 marks)

