

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF APPLIED SCIENCES

UNIVERSITY ORDINARY EXAMINATION

2017/2018 ACADEMIC YEAR EXAMINATION FOR MASTER OF SCIENCE IN STATISTICS

AMS 605: STATISTICAL METHODS FOR SPATIAL DATA

DURATION: 3 HOURS

DATE: 17TH AUGUST, 2018

TIME: 9.00 - 12.00 NOON

Instructions to Candidates:

- 1. Answer Any Four questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

QUESTION ONE

- a. Discuss any 6 areas of application of spatial statistics
- b. Defining what a variogram $\gamma(h)$ is, show that it can be expressed in terms of the covariance function:

$$\gamma(h) = C(0) \left[1 - \frac{C(h)}{C(0)} \right]$$
(11 marks)

QUESTION TWO

- a. Discuss any 6 types of kriging functions
- b. Consider the spatial arrangement of the hypothetical dataset below:

ID	1	2	3	4	5	6	7	8	9
X_1	0	1	1	2	2	3	3	4	4
<i>Y</i> ₁	0	0	1	2	3	3	4	4	5
Z_1	10	10	15	20	25	20	20	40	50

Letting $\hat{\gamma}_{ij}$ denote the variogram ordinates at distance h between points i and j, obtain:

i.	$\hat{\gamma}_{ij}$ (2.83)	(6 marks)
ii.	$\hat{\gamma}_{ij}(3.61)$	(7 marks)

QUESTION THREE

a. Define the following terms:

i.	Stationarity	(3 marks)
ii.	Isotropy	(2 marks)
iii.	Anisotropy	(2 marks)
iv.	Random effects	(3 marks)

b. Suppose we have 3 points as given in the table below. We want to predict the value v at the new location $S_0 = (65E, 137N)$:

Sample	Х	Y	V
1	61	139	477
2	63	140	696
3	64	120	227

Compute the covariances among all points and between each of the points to be predicted. Use the exponential covariance:

(14 marks)

(12 marks)

$$C(h) = \begin{cases} a + (\sigma^2 - a) & \text{if } |h| = 0\\ (\sigma^2 - a) \exp\left(\frac{-3|h|}{r}\right) & \text{if } h > 0 \end{cases}$$

Assume the nugget effect a=0, the range=1 and sill, $\sigma^2 = 100$ (15 marks)

QUESTION FOUR

- a. Spatial statistics ride on the advancement of computer algorithm for inference. Chief among these are the Markov chain Monte Carlo (McMC) and the Integrated Nested Laplace Approximation (INLA).
 - Discuss briefly the McMC method highlighting on the Metropolis Hastings and the Gibbs sampling methods, Burn in and convergence. (11 marks)
 - ii. Briefly outline the advantages of INLA over McMC (6 marks).
- b. The following are choropleth maps obtained my mapping the prevalence of HIV in Kenya with the spatially varying effects of some selected covariates. Give a brief interpretation of the maps (attached).
 (8 marks)

QUESTION FIVE

a. Let $Y_i | \theta_i \sim Poisson(\theta_i E_i)$ show that the standardized mortality (or morbidity) rate SMR at

region i is given by:
$$\hat{\theta}_i = \frac{y_i}{E_i}$$
 (12 marks)

- b. Discuss the components of a spatial data (7 marks)
- c. Define the following types of data.
 - i. Vector data(2 marks)ii. Raster data(2 marks)
 - iii. Triangulated data (2 marks)