EGERTON

UNIVERSITY

UNIVERSITY EXAMINATIONS NJORO CAMPUS

FIRST SEMESTER, 2017/2018 ACADEMIC YEAR

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURE, AGRICULTURE AND HUMAN ECOLOGY, ANIMAL PRODUCTION, DRYLAND RESOURCE MANAGEMENT, HORTICULTURE AND SOIL ENVIRONMENT AND LAND USE MANAGEMENT

AGRO 291: STATISTICS FOR AGRICULTURE

STREAM:

B.Sc. AGRIC, AGHE, ANSCI, DRLM, HORT & SELUM

TIME: 3 HRS

EXAMINATION SESSION: FEBRUARY-MARCH

YEAR: 2018

INSTRUCTIONS:

- (i) Answer ALL questions.
- Show all your calculations and formulae where applicable. (ii)
- Scientific calculators may be used. (iii)
- Mobile phones are STRICTLY PROHIBITED in the examination room. (iv)
- Figures in brackets indicate marks for each question. (v)
- Statistical tables and graph paper are provided. (vi)

QUESTION ONE

(a) Differentiate between the following terms as used in Agricultural Statistics:

(i)	Sample and Population	122
(ii)	One-Tailed and Two-Tailed test	(2 marks)
(iii)	Mutually exclusive and Independent events	(2 marks)
(iv)		(2 marks)
	Discrete and continuous variable	(2 marks)
(v)	Type I and Type II error	(2 marks)

[&]quot;Transforming Lives through Quality Education" Egerton University is ISO 9001:2008 Certified

(b) A plant breeder claims that selection of *Phaseolus vulgaris* for seed should be based on number of seeds per pod. Thus, the more the number of seeds per pod, the higher the recurrence of the trait. A sample of 40 pods had seed distribution in the proportions shown. Study the table below and answer the questions that follow

Table 1: Proportions of number of seeds per pod for Phaseolus vulgaris

No. of seeds/pod(x)	3	4	5	6
Proportions (%)	20	52.5	25	2.5

 (i) Complete this simple frequency distribution table marks)

(3

(ii) Calculate mean, mode, median, standard deviation, coefficient of variation, and range
(6 marks)

QUESTION TWO

(a) To detect the presence of harmful insects in farm fields, we can put up boards covered with a sticky material and examine the insects trapped on the boards. Is there any evidence that the effectiveness of the boards to attract insects varies? Test at α=.05

(10 marks)

Table 2: Insect behavior against coloured boards

Board colour	Insects trapped					
Blue	16	11	20	21	14	7
Green	37	32	20	29	37	32
White	21	12	14	17	13	20
Yellow	45	59	48	46	38	47

- (b) A white bull is mated with a black cow; the probability of getting a single grey calf is ¼. Taking a sample of 9 calves from this type of mating, what is the probability that there will be:
 - i) Two grey calves

(2 marks)

ii) No grey calf

(2marks)

QUESTION THREE

a) An Entomologist sprayed 120 adult Melon flies with a specific low concentration of Malathion and observed their survival times. The mean and the standard deviation were found to be 18.3 and 5.2 days, respectively. Use these data to construct a 99% confidence interval for the true mean survival time.

(5 marks)

[&]quot;Transforming Lives through Quality Education"
Egerton University is ISO 9001:2008 Certified

- (h) State the challenges a researcher is likely to encounter in running a multiple t-test. G marks)
- (c) What circumstances would permit a researcher to use a Complexely Randomized Design in experimentation?

 G marks?
- (d) State any two distinguishing characteristics of mean and mandaed deviation

C mertes

QUESTION FOUR

An Agricultural marketing company was engaged to evaluate the sales of an agricultural product before and after a promotional campaign. The table below shows the volumes (in kg per day) sold in six sampled outlets before or after marketing promotion.

Table 3: Daily sales of cauliflower (kg) in six marketing outlets

Owtlets	A	В	; C	D	E	F
Before promotional campaign (X)	53	28	31	48	50	42
After promotional campaign (Y)	58	29	30	55	56	45

- Test at α=0.05 whether the campaign could be judged as a success marks)
- (4 marks)

(8

(ii) Outline and explain the four categories of experiments

QUESTION FIVE

- (a) By giving appropriate examples, differentiate between Independent and Dependent variables as used in regression analysis

 (3 marks)
- (b) An Agronomist assumes that there is a linear relationship between the amount of fertilizer supplied to tomato plants and the subsequent yield of tomatoes obtained. Eight tomato plants of the same variety, with a solution in which x grams of fertilizer was dissolved in a fixed quantity of water. The yield, y kilograms, of tomatoes was recorded.

Table 4: Effects of fertilizer on yield (kg) of tomatoes

Plant	Α	B	C	D	E	F	G	H
x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
v	3.9	4.4	5.8	6.6	7.0	7.1	7.3	7.7

(i) Plot a scatter diagram of yield, y, against amount of fertilizer, x

(4 marks)

(ii) Calculate the equation of the least squares regression line of y on x

(4 marks)

(iii) Estimate the yield of a plant treated with 3.2 grams of fertilizer

(I mark)

Table A.3 Values of t

df			Probat	pility of a	numerica	lly larger	value of	(•	
	0.5	0.4	0.3	0.2	0.1	0.05	0.02	0.01	0.00	1
. 2	1 000 81 76 74	5 1.0 5 9 1 9	76 1.963 61 1.386 78 1.250 41 1.190 120 1.156	3 078 1 886 1 638 1 533 1 476	6.314 2 920 2 353 2 132 2 015	12 706 4 303 3 182 2 776 2 571			8.	598
6 7 8 9	71	18 .9 11 .9 06 .9	906 1 134 896 1 119 889 1 108 883 1 100	1 440 1 415 3 1 397 0 1 383	1 943 1 895 1 860 1 833	2 447 2 365 2 306 2 26	3 143 2 999 2 89 2 2 82	3 .707 3 .499 6 3 .35 1 3 .25	5 5 5 5 4	959 405
11 12 13			879 1 093 876 1 08 873 1 08 870 1 07 868 1 07 866 1 07	8 1 36 3 1 35 79 1 35 76 1 34	3 1 799 6 1 78 60 1 77 15 1 76	6 2 20 2 2 17 1 2 16 61 2 15	2 7 2 6 2 6 2 6 4 5 2 6	18 3 10 81 3 05 50 3 0 24 2 9	06 4 55 4 12 77	4 318 4 221 4 140 4 073
1	6 7 18 19 120	690 689 688 688	862 1 0	069 1 3 067 1 3 066 1 3	33 1 7 30 1 7 328 1 7	40 2 34 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 2 3 101 2 093 2	552 2 539 2	921 898 878 861 845	4 015 3 965 3 922 3 883 3 850
	21 22 23 24 25	686 685 685 685 684	858 1 858 1 857 1	061 1 060 1 059 1	321 1 319 1 318 1	717 2 714 2 711 2	074 2 069 2 064 2	508 2 500 2 492 2	831 819 807 797 787	3 819 3 792 3 767 3 745 3 725
	26 27 28 29 30	684 684 683 683 683	.855 I 855 I .854 I	057 1 056 1 055 1		703 2 701 2 .699 2	052 048 045	473 2 467 2 462 2	779 771 2.763 2.756 2.756	3.707 3.690 3.674 3.659 3.646
	'40 60 120 ∞	681 679 677 674	848 845	1 050 1 046 1 041 1 036	303 1 1 296 1 1 289 1 1 282	671		2 390 2 358	2 704 2 660 2 617 2 576	3 551 3 460 3 373 3 291
	0.25 0.2 0.15 0.1 0.05, 0.025 0.01 0.005 Probability of a larger positive value of t							0.0005		

Source: This table is abridged from Table III of Fisher and Yates, Statistical Tables for Biological, Agricultural, and Medical Research, published by Oliver and Boyd Ltd., Edinburgh, 1949, by permission of the authors and publishers.