| NAME      |           | DATE      |      |
|-----------|-----------|-----------|------|
| INDEX NO. | CANDIDATE | e'S SIGNA | TURE |

232/3

### PRE-MOCK

Kenya Certificate of Secondary Kenya Certificate of Secondary Education (K.C.S.E)

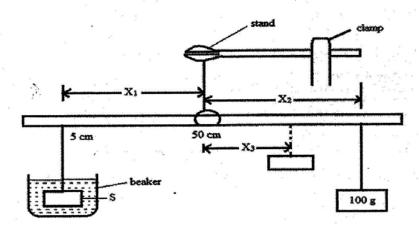
PHYSICS PAPER 3 PRACTICAL TIME: 2 ½ HOURS

### DISTRICTIONS HOICANDIDATES

- o Wine your manne and index number in the spaces provided
- o Answer ALL the questions in the spaces provided in the question paper.
- o You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for clear record of observations actually made, their suitability, accuracy of them.
- o Candidates are advised to record their observations as soon as they are made.
- o Non- programmable silent electronic calculators and KNEC mathematical table may be used?

# FOR EXAMINERS-USE ONLY

| Question 1        | b (ii) | c (i) | c (ii) | c (iii) | c (iv) | d(i) | d (ii) |
|-------------------|--------|-------|--------|---------|--------|------|--------|
| Maximum score     | 5      | 5     | 2      | 1       | 1      | 2    | 2      |
| Candidate's score | 1 1    |       |        |         |        |      |        |


| Question 2    | a | b | c (i) | c (ii) | c (iii) | f(i) | f (ii) | ter in the |
|---------------|---|---|-------|--------|---------|------|--------|------------|
| Maximum score | 1 | 8 | 5     | 2      | 2       | 2    | 2      |            |
| Candidate's   |   |   |       |        | 47.20   |      |        | Grand      |
| score         |   |   |       |        |         |      |        | total      |

This paper consists of 6 printed pages.

Candidates should check to ensure that all pages are printed as indicated and no questions are missing

# 1. You are provided souls.

- · Mass S
- · One 100g mass
- Metre rule
- · Cotton thread (3 -pieces each about 30cm long)
- · Retort stand and clamp
- 250cm<sup>3</sup> glass beaker
- 200cm<sup>3</sup> of water
- (a) (i) Make loops of thread on mass S and the 100 g mass
  - (ii) Suspend the metre rule on the clamp from the 50cm mark
  - (iii) Hang mass S from the mark. Balance the metre rule using the 100g mass (see fig. 1 below)



- (iv) Measure the distance  $X_1$  and  $X_2$  from the 50cm mark
- (v) Repeat the procedures for the values of  $X_1$  indicated in the table below:

| X1 (cm) | X <sub>2</sub> (cm) | X <sub>3</sub> (cm) | X <sub>2</sub> -X <sub>3</sub> (cm) |  |  |
|---------|---------------------|---------------------|-------------------------------------|--|--|
| 45      |                     |                     |                                     |  |  |
| 40      |                     | 25-0                | ~                                   |  |  |
| 35      |                     |                     |                                     |  |  |
| 30      |                     |                     |                                     |  |  |
| 25      |                     |                     |                                     |  |  |
| 20      |                     | 9                   |                                     |  |  |


(b) (i) Repeat steps (a) (iii) to (a) (iv) above, but this time, keep mass S totally immersed in water. Record distance  $X_3$  required to balance the 100g mass in the table above.

(ii) Complete the table for the values of (X2- X3)

(5mks)

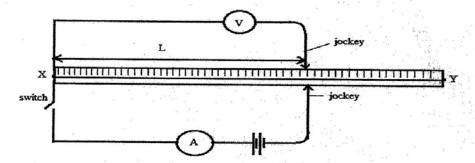
(c) (i) Plot a graph of  $X_2$  (Vertical axis) against  $(X_2-X_3)$  on the grid provided

(5mks)



| ii)   |                                                                                | 2mks)     |
|-------|--------------------------------------------------------------------------------|-----------|
|       |                                                                                | ·····:    |
|       |                                                                                |           |
| iii)  |                                                                                | lmk)      |
| iv)   | Given that the density of water is 1000kg/m³, determine the density of mass, S | lmk)      |
|       | Jsing the apparatus you were given, determine the mass of your metre rule (2)  | <br>2mks) |
| ••••• |                                                                                |           |
|       |                                                                                |           |
|       |                                                                                | 2mks)     |
| ••••• |                                                                                |           |
|       |                                                                                |           |

You are provided with the following: -


- Ammeter
- A voltmeter
- A straight wire XY mounted on a millimeter scale
- Two jockeys
- 7 connecting wires
- · A micrometer screw gauge (to be shared)
- A cell holder for two dry cells
- Two dry cells
- A switch
- •

## Proceed as follows:

(a) Using the micrometer screw gauge, determine the diameter d' of the wire XY

| đ | - | mm |  | . 3 | 1.4     | (1mk   |
|---|---|----|--|-----|---------|--------|
|   |   |    |  |     | 4 4 5 6 | (TILLA |

Set-up the apparatus as shown below:-



b) With both jockeys set at L = 10cm from X, measure current I through the wire and voltage V across it. Repeat this procedure for the other values of L and record in the table below: (8mks)

| Length (cm)       | 10  | 30 | 40                                               | 50 | 70 | 80       | 100 |
|-------------------|-----|----|--------------------------------------------------|----|----|----------|-----|
| Length (m)        |     |    | <del>                                     </del> |    |    |          |     |
|                   | 154 | 1  |                                                  |    | 1  |          | 1 . |
| Current I(A)      |     |    |                                                  |    |    |          |     |
| Voltage V(V)      | -   |    |                                                  |    | -  | <b>.</b> |     |
| $R = V/I(\Omega)$ | +   |    |                                                  | -  | -  | <u> </u> |     |
|                   |     |    |                                                  |    |    |          |     |

c) (i) Using the values in the table above, plot a graph of I(A) against  $R(\Omega)$  on the grid provided (5mks) (ii) Determine the gradient of the graph at  $R = 10\Omega$ (2mks)

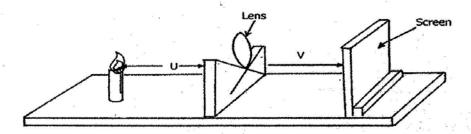
(2mks)

(iii) Given that  $I = \pi d^2 R$  where L = 60 cm, find the value of K

4KL

| -    | _  | * |
|------|----|---|
|      | -  |   |
|      | ч. |   |
| 10.7 | _  | 2 |

| <br> |   |                   |      |                |      |
|------|---|-------------------|------|----------------|------|
| <br> |   |                   | <br> |                | <br> |
|      |   |                   |      |                |      |
|      | - |                   |      |                |      |
|      |   |                   |      |                |      |
|      |   |                   |      |                |      |
| <br> |   | ,,,,,,,,,,,,,,,,, | <br> | ************** | <br> |
|      |   |                   |      |                |      |


## Part B

You are provided with the following apparatus

- A lens
- A lens holder
- A candle
- A white screen
- A metre rule

## Procedure

d) Set up the apparatus a shown in the figure 3 below:



- e) Starting with u = 30cm adjust the position of the screen to obtain a sharp image of the candle, record value of V in the table shown below:
- f) (i) Repeat the procedure above for u = 20cm and complete table below:

Table 3

| u em | v em | $M = \frac{v}{u}$ |
|------|------|-------------------|
| 20   |      |                   |
| 30   | -,   |                   |

(2mk)

| (ii) | Given that the focal length of the lens satisfies the equation, $f = \frac{v}{1+m}$ determine the |     |    |  |     |            |  |  |
|------|---------------------------------------------------------------------------------------------------|-----|----|--|-----|------------|--|--|
|      | average value of the focal length                                                                 |     |    |  |     |            |  |  |
|      | Per . "                                                                                           |     | ?* |  | .** | <b>4</b> , |  |  |
|      |                                                                                                   | 157 |    |  |     |            |  |  |
|      |                                                                                                   |     |    |  |     |            |  |  |