UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION
THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION SCIENCE \& BACHELOR OF EDUCATION ARTS

SMA 306: COMPLEX ANALYSIS 1

DATE: APRIL 7, 2017
TIME: 8:30-10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a) Given that $z_{1}=3+i$ and $z_{2}=5-i$ rationalise the denominator of the complex fraction $\frac{z_{1}}{z_{2}}$ giving your answer in the simplest form.
b) Express $z=-\sqrt{6}-\sqrt{2 i}$ in polar form.
c) Prove that $\left|Z_{1}+Z_{2}\right| \leq\left|Z_{1}\right|+\left|Z_{2}\right|$
d) Find all the points of discontinuity of the function $F(Z)=\frac{Z^{2}+1}{Z^{4}-16}$
e) Show that $F(Z)=e^{Z}$ is a periodic function with the period $2 k \pi i$
f) Evaluate $\int \bar{Z}$ dz from $Z=0$ to $Z=4+2 i$ along the line joining $Z=0$ to $Z=2 i$ and the line joining $Z=2 i$ to $Z=4+2 i$.
g) Evaluate

$$
\oint_{c} \frac{e^{z}}{(z-2)(z-4)} d z
$$

When $|z|=5$
(4 Marks)
h) State without proof the Cauchy's fundamental theorem.

QUESTION TWO (20 MARKS)

a) Prove that
i. $U=e^{-x}(x \sin y-y \cos y)$ is harmonic.
ii. Find V such that $F(z)=U+i V$ is analytic. (U is given in (i) above)
b) Show that $\left|e^{z}\right|=e^{x}$
c) Prove that if $F(Z)$ is analytic inside and on the boundary C of a simply connected region R and a is any point inside the curve C then $\oint_{C} \frac{F(z)}{z-a} d z=2 \pi i F(a)$.

QUESTION THREE (20 MARKS)

a) Find the Taylor's series of expansion $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}+1)^{2}}$ about $\mathrm{z}=-\mathrm{i}$
b) Show that $\operatorname{Sin}^{-1} z=\frac{1}{i} \ln \left(i z+\sqrt{1-z^{2}}\right)$
c) Evaluate $\int_{c_{1}} z^{2} d z$ where c_{1} is the line segment OB from $z=0$ to $z=2+i$
d) Given that $f(z)=\frac{1}{z(z+2)}$ resolve into partial fractions and hence use Cauchy's theorem to evaluate $\oint_{c} \frac{d z}{z(z+2)}$

QUESTION FOUR (20 MARKS)

a) Find the poles and the corresponding residues of each of the following functions.
(i) $\quad F(z)=\frac{z^{3}+5 z+1}{z-2}$
(ii) $f(z)=\frac{z}{(z-1)(z+1)^{2}}$
b) Use the residue theorem to evaluate $\oint_{c} \frac{e^{z}}{(z-2)(z-4)} d z \quad$ when $|z|=5$
c) Expand $f(z)=\frac{3}{z^{2}(z-3)^{2}}$ in a Laurent series at $\mathrm{z}=3$.

QUESTION FIVE (20 MARKS)

a) Use the Cauchy Integral formula to evaluate $\oint_{C} \frac{\cos Z}{z^{3}} d z$
(3 Marks)
b) Use De Moivre's theorem to prove the identity $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
c) Evaluate $\lim _{z \rightarrow i} \frac{z^{2}+1}{z^{6}+1}$
d) Show that $F(z)=e^{-y}(\cos x+i \sin x)$ is analytic.
e) Given the Cauchy Riemann's equations $\frac{d u}{d x}=\frac{d v}{d y}$ and $\frac{d v}{d x}=-\frac{d u}{d y}$ derive the Laplace's equations if the second derivative of U and V exists and are continuous.
\square

