

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION SCIENCE & BACHELOR OF EDUCATION ARTS

SMA 306: COMPLEX ANALYSIS 1

DATE: APRIL 7, 2017

TIME: 8:30-10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

- a) Given that z₁ = 3 + i and z₂ = 5 − i rationalise the denominator of the complex fraction z₁/z₂ giving your answer in the simplest form. (3 Marks)
 b) Express z = -√6 √2i in polar form. (4 Marks)
 c) Prove that |Z₁ + Z₂| ≤ |Z₁| + |Z₂| (4 Marks)
 d) Find all the points of discontinuity of the function F(Z) = z²+1/z⁴-16</sub> (5 Marks)
 e) Show that F(Z) = e^z is a periodic function with the period 2kπi (3 Marks)
- f) Evaluate ∫ Z dz from Z=0 to Z = 4+2i along the line joining Z = 0 to Z = 2i and the line joining Z = 2i to Z = 4+2i.
 (5 Marks)

g) Evaluate

$\oint_{c} \frac{e^{z}}{(z-2)(z-4)} dz$		
When $ z = 5$	(4 Marks)	
State without proof the Cauchy's fundamental theorem.	(2 Marks)	

QUESTION TWO (20 MARKS)

a) Prove that

h)

i. $U = e^{-x}(x \sin y - y \cos y)$ is harmonic.	(6 Marks)	
ii. Find V such that $F(z) = U + iV$ is analytic. (U is given in (i) above)	(5 Marks)	

- b) Show that $|e^z| = e^x$
- c) Prove that if F(Z) is analytic inside and on the boundary C of a simply connected region R and a is any point inside the curve C then $\oint_C \frac{F(Z)}{Z-a} dz = 2\pi i F(a)$. (6 Marks)

QUESTION THREE (20 MARKS)

a) Find the Taylor's series of expansion
$$f(z) = \frac{1}{(z+1)^2}$$
 about $z = -i$ (4 Marks)

b) Show that
$$Sin^{-1} z = \frac{1}{i} ln(iz + \sqrt{1 - z^2})$$
 (7 Marks)

- c) Evaluate $\int_{c_1} z^2 dz$ where c_1 is the line segment OB from z = 0 to z = 2 + i (3 Marks)
- d) Given that $f(z) = \frac{1}{z(z+2)}$ resolve into partial fractions and hence use Cauchy's theorem to evaluate $\oint_c \frac{dz}{z(z+2)}$ (6 Marks)

QUESTION FOUR (20 MARKS)

- a) Find the poles and the corresponding residues of each of the following functions.
 - (i) $F(z) = \frac{z^3 + 5z + 1}{z^{-2}}$ (3 Marks)

(ii)
$$f(z) = \frac{z}{(z-1)(z+1)^2}$$
 (6 Marks)

- b) Use the residue theorem to evaluate $\oint_c \frac{e^z}{(z-2)(z-4)} dz$ when |z| = 5 (6Marks)
- c) Expand $f(z) = \frac{3}{z^2(z-3)^2}$ in a Laurent series at z=3. (5 Marks)

(3 Marks)

QUESTION FIVE (20 MARKS)

Ť.

a)	Use the Cauchy Integral formula to evaluate $\oint_c \frac{\cos z}{z^3} dz$	(3 Marks)
b)	Use De Moivre's theorem to prove the identity	
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	(6 Marks)
c)	Evaluate $\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$	(3Marks)
d)	Show that $F(z) = e^{-y}(\cos x + i\sin x)$ is analytic.	(4 Marks)
e)	Given the Cauchy Riemann's equations	
	$\frac{du}{dx} = \frac{dv}{dy}$ and $\frac{dv}{dx} = -\frac{du}{dy}$ derive the Laplace's equations if the second	d derivative of
	U and V exists and are continuous.	(4 Marks)

--END---

