# UNIVERSITY EXAMINATIONS 

2015/2016 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

## ECON 310: ADVANCED MICROECONOMICS

## DAY: WEDNESDAY

TIME: 9.00-11.00 A.M.

## INSTRUCTIONS:

(i) Answer Question ONE and ANY other TWO questions
(ii) Do not write on the question paper
(iii) Show your working clearly

## QUESTION ONE (30 marks)

a) Suppose that a consumer has a demand function for milk of the form:

$$
\mathrm{X}_{1}=10+\mathrm{M} / 10 \mathrm{P}_{1}
$$

Originally his income is sh. 120 per week and the price of milk is sh. 3 per litre.
Suppose the price of milk falls to sh. 2 per litre.
Determine: i) the substitution effect
ii) the income effect
(3 mks)
iii) the total effect
(3 mks)
b) You are given the following Cobb-Douglas production function
$f(X)=X^{a}$ where $a>0$
Determine: i) Input demand function
ii) Output supply function
iii) Profit function
(b) There are two commodities $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ on which a consumer spends his entire income in a day. He has utility function $U=X^{0.5}{ }_{1} X^{0.5}{ }_{2}$. Find out the optimal quantities of $X_{1}$ and $X_{2}$ if prices of $X_{1}$ and $X_{2}$ are sh. 5 and sh. 2 respectively and his daily income equals sh. 500 .
(c) Three oligopolists operate in a market with inverse demand given by $p(Q)=a-Q$. Where $Q=q_{1}+q_{2}+q_{3}$. Each firm has a constant marginal cost of production c and no fixed cost. The firms choose their quantities as follows. First firms 1 and 2 simultaneously choose $q_{1}$ and $q_{2}$ respectively. Then firm 3 observes $q_{1}$ and $q_{2}$ and chooses $q_{9}$. Find the subgame perfect Nash equillibria of this game.
(d)With illustration explain the two step approach to profit maximization ( 5 mks )

## QUESTION TWO (20 marks)

(a) With example Proof the hotelling's lemma
(b) Given a production function

$$
y=a_{1} x_{1}+a_{2} x_{2}, a>0
$$

Required:
$\begin{array}{ll}\text { (i) Calculate the conditional input demand functions. } & (5 \mathrm{mks}) \\ \text { (ii) } & \text { Derive the cost function. }\end{array}$
(c) Using the convexity property of the profit function with respect to output price (p) illustrate graphically how the output supply function can be derived from the profit function using the hotelings lemma.

## QUESTION THREE (20 marks)

(a) Suppose the cost function of a firm is given by.

$$
c\left(w_{2} y\right)=\left(2 w_{1}+3 w_{2}\right) y
$$

What is the firm's production function?
(b) Using the concavity property of the cost function with respect to input prices, demonstrate graphically how the conditional input demand function can be derived from the cost function using the shepherd lemma.
(c) A firm has two plants with cost function

$$
\begin{gathered}
c_{1}\left(y_{1}\right)=5 y_{1}^{2} \text { and } \\
c_{2}\left(y_{2}\right)=2 y_{2} .
\end{gathered}
$$

Required
What is the firm's cost function?

## QUESTION FOUR ( 20 marks)

Given a utility function:

$$
\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{X}_{2}\right)=\mathrm{x}_{1}{ }^{\mathrm{a}} \mathrm{X}_{2}{ }^{1-\mathrm{a}}
$$

(i) Calculate the Marshallian demands for this consumer.
(ii) Derive the indirect utility function for this consumer.
(iii) Calculate the expenditure function for this consumer.
(iv) Calculate the Hicksian demands for this consumer.

## QUESTION FIVE

a) You are given the following leontief production function:

$$
y=\min \left[\frac{x_{1}}{a_{1}}, \frac{x_{2}}{a_{2}}\right]^{1 / 2}
$$

Determine:
i) Conditional input demands (2 mks)
ii) The cost function (2mks)
iii) The output supply function (3mks)
iv) Input demand functions
b) Assuming a linear inverse demand function $p=a-q_{A}-q_{B}$ and a constant marginal cost $\mathrm{MC}=\mathrm{C}$. Firm A moves first and chooses quantity $q_{A}$. Firm B observes firm A's output choice and selects its own optimal level of output $q_{B}$.

Determine:
i. Equilibrium output of each firm
ii. Equilibrium price
iii. Profit for each firm

