

MOI UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR (ACADEMICS, RESEARCH & EXTENSION)

UNIVERSITY EXAMINATIONS **2018/2019 ACADEMIC YEAR**

THIRD YEAR SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF

BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 310/314

COURSE TITLE: QUANTUM MECHANICS I

DATE: 10THJULY, 2019 TIME: 9.00 A.M. - 12.00 NOON

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF (4) PRINTED PAGES

PLEASE TURN OVER

UNIVERSITY OF ELDORET UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRDYEAR, SEMESTER II EXAMINATION

FOR THE DEGREES OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 310/314

COURSE TITLE: QUANTUM MECHANICS I

INSTRUCTIONS TO CANDIDATES

- Answer question ONE, TWO and any other THREE questions. Section A carries 28
 marks and all the other questions in section B carry 14 marks each.
- Illustrate your answers with suitable diagrams wherever necessary.
- Duration of the examination: 3 hours

You may find the following table useful.

X V VA BRITANNIA BENEVICE STREET	4 1	Associated Operator
Observable	symbol	X
Position momentum	X	ħ 0
	p	
		i dx
Potential energy Kinetic energy	U	$\frac{U(x)}{\hbar^2 \partial^2}$
	K	<u>h" o" </u>
		- 2 3
Hamiltonian	H	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + U(x)$
		$-\frac{1}{2m}\frac{\partial x^2}{\partial x^2} + U(x)$
	y-r	am ox
Total energy	£5	$i\hbar \frac{1}{2}$
		and the same of th

$$h = 6.63 \times 10^{-34} J.s$$

$$m_e = 9.1 \times 10^{-31} kg$$

$$1eV = 1.6 \times 10^{-19} J$$

$$c = 3.0 \times 10^8 m/s$$

SECTION A

Question 1

- (i) The complex conjugate of z = a + bi is z = a bidenoted by \bar{z} . Show that (a) $z\bar{z} = |z|^2$; (b) $z + \bar{z}$ is reall. [2 marks]
- (ii) Prove that for the operators A,B and C, the following identities are valid:

(a) [B,A]=-[A,B]

[1 mark]

(b) [A+B,C]=[A,C]+[B,C]

[2 marks]

(c) [A,BC]=[A,B]C+B[A,C]

[2 marks]

(iii) Suppose the operators A and B commute with their commutator, i.e [B,[A,B]]=[A,[A,B]]=0. Show that

(a) $[A, B^2] = nB^{n-1}[A, B];$

[2 marks]

(b) $[A^n, B] = nA^{n-1}[A, B].$

[1 marks]

- (iv) Prove that the Bohr hydrogen atom approaches classical condition when n becomes very large and small quantum jumps are involved. [5 marks]
- (v) (a) Consider a thermal neutron, that is, a neutron with speed v corresponding to the average thermal energy at the temperature T=300k. Is it possible to observe a diffraction pattern when a beam of such neutron falls on a crystal? [3 marks]
 (b) In a large accelerator, an electron can be provided with energy over 1GeV = 109eV. What is the De Broglie wavelength corresponding to such electron? [2 marks]

Question Two

Consider a particle of mass m and energy E>0 held in the one-dimensional potential $-V_0\delta(x-a)$.

- (a) integrate the stationary Schrodinger equation between $a \varepsilon$ and $a + \varepsilon$. Taking the limit $\varepsilon \to 0$, show that the derivatives of the eigen function $\emptyset(x)$ presents a discontinuity at x = 0 and determine it. [3 marks]
- (b) from part (a) $\emptyset(x)$ can be written as

$$\begin{cases} \emptyset(x) = A_1 e^{ikx} + A_1' e^{-ikx} & x < a \\ \emptyset(x) = A_2 e^{ikx} + A_2' e^{-ikx} & x > a \end{cases}$$

Where $k = \sqrt{\frac{2mE}{\hbar^2}}$. Calculate the matrix M defined by $\binom{A_2}{A_2'} = M\binom{A_1}{A_1'}$ [5 marks]

Section B

Question Three

Derive the following properties of the ad joint of an operator: (a) $(A^{\dagger})^{\dagger} = A$; [3 marks]

(b) $(\lambda A)^{\dagger} = \lambda^* A^{\dagger}$, where λ is a complex number; [4 marks]

(c) $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$; [3 marks]

(d) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ [4 marks]

Question Four

(i) Consider a one-dimensional oscillator in the nth energy level. Compute the expectation values $\langle x^2 \rangle$, $\langle X^2 \rangle$, $\langle P^2 \rangle$.

What can you say about the uncertainty relation $\Delta x \Delta p$?

[5 marks]

(ii) Prove the following relations for the angular momentum operator:

(a) $[L^2, L] = 0$; [6 marks]

(b) $L \times L = i\hbar L$ [3 marks]

Question Five

Using the basis vectors of S_z eigenvectors, calculate $S_i \left| + \frac{1}{2} \right|$ and $S_i \left| - \frac{1}{2} \right|$ (i = x, y, z), where $\left| + \frac{1}{2} \right|$ and $\left| - \frac{1}{2} \right|$ are the eigenvectors of S_z with eigenvalues $+ \hbar/2$ and $- \hbar/2$, respectively. The basis vectors of S_z eigenvectors are $S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $S = \frac{\hbar}{2} \sigma$

(b) calculate the commutation relations $[\sigma_i, \sigma_j]$, where j=x,y,z and σ_i are the Pauli matrices, i.e

 $\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$ [7 marks]

Question Seven

Consider a particle in a central potential. Given that $|lm\rangle$ is an eigenstate of L^2 and L_z : (a) compute the; sum $\Delta L_x^2 + \Delta L_y^2$. [12 marks]

(b) For which values of l and m does the sum in part (a) vanish? [2 marks]