

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BSC ECONOMICS

COURSE CODE: ARE 3108

COURSE TITLE: AGRICULTURAL PRODUCTION

ECONOMICS

DATE: 6TH DECEMBER 2018

TIME: 0830 - 1030HRS

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **THREE** questions

This paper consists of 3 printed pages. Please turn over.

QUESTION ONE

- a) State Euler's Theorem as used in production economics (2 marks)
- b) Briefly discuss the properties/characteristics of Cobb-Douglas
 Production Functions (6 marks)
- c) Enos has a tobacco farm firm in Uriri area having the following functions:

$$Q = 0.8P - 20$$

TFC = 180
AVC = 4 + 2Q

Find Enos' profit maximizing level of output and his profit (4 marks)

- d) The production function expresses a functional relationship between quantities of inputs and outputs in Agricultural Production. Discuss the usefulness of Production Functions as itemized by Olayide and Heady (5 marks)
- e) Discuss the assumptions used in Linear Programming in solving farm firm optimization problems (5 marks)
- f) Find the homogeneity of the following production function and state its returns to scale:

$$24X^{1/2}Y^{3/2} - 2X^3/Y$$

(3 marks)

QUESTION TWO

- a) Clearly distinguish between the Rate of Technical Substitution and Rate of Product Transformation (2 marks)
- b) Explain the measures/precautions which should be taken by farm firms against Risks in the production environment (7 marks)
- c) Given the following output function

$$Y_1 = 80 + 0.5Y_2 - 0.125Y_2^2$$

And $P_{y1} = Ksh \ 10$
 $P_{y2} = Ksh \ 4$

Determine:

- i. The amount of Y_1 and Y_2
- ii. The Total Revenue

(6 marks)

QUESTION THREE

a) Using well labelled diagram(s) distinguish between Competitive, Supplementary, and Complementary products/enterprises

(6 marks)

b) Wafula has the following maize production function

$$O = 2K^{0.5}L^{0.3}$$

Where Q is the quantity of maize produced while K and L are units of inputs capital and labour respectively. Supposing that a bag of maize sells at Ksh. 400, the prices of K and L are Ksh 16 and Ksh. 4 respectively, and that he has a total of Ksh. 5000 to spend on the two inputs:

- i. Using Lagrangean optimization technique determine the quantities of K and L that Wafula will need in order for him to maximize profit
- ii. What will be Wafula's maximum profit (9 marks)

QUESTION FOUR

- a) Briefly discuss the computational difficulties in linear programming as an optimization technique (3 marks)
- b) Alamin produces maize and beans in his farm. Each bag of maize contributes ksh 400 to profit while a bag of beans contributes Ksh 500. The production of these two requires three inputs A, B and C and their available quantities are 8, 12 and 7 respectively. To produce one bag of maize, needs 5 units of input A, 3 units of input B but does not need input C. on the other hand, the production of beans requires 2 units of A, 4 units of B and 1 unit of C

Formulate the above as a linear programming problem and using Simplex Method, calculate the optimal bags of maize and beans to be produced and determine Alamin's profit (12 marks)

QUESTION FIVE

Kinyanjui's waru farm has the following production function

$$y = 8x^{1/2}$$

the price of input x is Ksh 40 per unit while the Total Fixed Costs are ksh 300.

i.	Find:				
a)	MPP	b) APP	c) AVC	d) ATC	e) MC
ii.	Suppose that the output price is ksh. 500, find:				
a)	AVP	b) VMP	c) MFC		
iii.	Using the data, find:				
 a) the profit maximizing level of input 					
b)	b) the profit maximizing level of output				(15 marks)
END					