

UNIVERSITY EXAMINATIONS
SUPPLEMENTARY

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF APPLIED COMPUTER SCIENCE

ACSC 271/ACMP 203: MATHEMATICAL METHODS FOR COMPUTER SCIENTISTS
STREAMS: BSC (COMP.SCI)
TIME: 2 HOURS

DAY/DATE: WEDNESDAY 12/9/2018
8.30 A.M. - 10.30 A.M.

INSTRUCTIONS:

- Answer question ONE and Any other TWO questions
- Adhere to the instructions on the answer booklet

QUESTION ONE

a). Evaluate the angle between the two vectors,

$$
a=i-2 j+4 k \quad \text { and } \quad b=-4 i+j-2 k
$$

b). Find the area of the triangle $P Q R$ with vertices $P=\left(\begin{array}{lll}3 & 4 & 7\end{array}\right), Q=\left(\begin{array}{lll}0 & 6 & 1\end{array}\right)$ and $R=\left(\begin{array}{lll}5 & -2 & 4\end{array}\right)$
[5 marks]
c). Verify whether the vectors $a=\left(\begin{array}{lll}-1 & 2 & 2\end{array}\right), b=\left(\begin{array}{lll}2 & -3 & 1\end{array}\right), \quad c=\left(\begin{array}{ll}-4 & 7\end{array}\right.$
3) are coplanar [5 marks]
d). Find the volume of the parallellopiped spanned by the vectors $a=\left(\begin{array}{ll}1 & 3\end{array}\right.$ $-1), b=\left(\begin{array}{lll}-2 & 1 & 2\end{array}\right), \quad c=\left(\begin{array}{lll}3 & 5 & -2\end{array}\right)$
[5 marks]
c). Evaluate the following limits

$$
\lim _{\delta x \rightarrow 1} \frac{x^{2}-1}{x-1}
$$

(i)

$$
\lim _{\delta x \rightarrow \infty} \frac{x^{2}-4 x}{4 x^{2}+7}
$$

(ii)

$$
y=\sqrt{x+3} \quad \text { evaluate } \frac{d y}{d x}
$$

d). Given that

QUESTION TWO

$$
\sum_{n-1}^{\infty}(-1)^{n-1} \frac{3 n!}{n^{n}}
$$

a). Prove that the series
is absolutely convergent using the ratio test

Is convergent using the root test
[7 marks]
c). Using an integrating factor solve the differential equation

$$
\frac{d y}{d x}+2 x=\sin x
$$

[6 marks]

QUESTION THREE

a). Calculate the determinant of the matrix below

$$
\left(\begin{array}{ccc}
1 & 3 & -2 \\
4 & -5 & 6 \vdots \dot{\vdots} \\
0 & 0 & 2
\end{array}\right)
$$

b). Test the consistency of the system below

$$
\begin{aligned}
& -X_{1}+2 X_{2}+-3 X_{3}=4 \\
& 2 X_{1}-4 X_{2}+6 X_{3}=-8 \\
& X_{1}-2 X_{2}+3 X_{3}=-4
\end{aligned}
$$

c). Use the trapezoidal rule with $\mathrm{n}=5$ to approximate
[8 marks]

$$
\int_{1}^{2} \frac{d x}{x}
$$

