CHUKA

UNIVERSITY

RESIT/ SPECIAL EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF BACHELOR OF

MATH 400: TOPOLOGY 1

STREAMS: TIME: 2 HOURS

DAY/DATE: WEDNESDAY 12/09/2018 2.30 PM – 4.30 PM

INSTRUCTIONS:

Answer **ALL** questions

- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

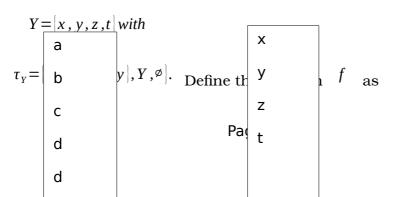
(a) Consider the following topology on X = [a,b,c,d,e] and

$$\tau = [[a], [a,b], [a,c,d], [a,b,e], [a,b,c,d], X,\emptyset]$$

Given the sets $A=[a], B=[b], C=\{c,e\}$, which ones are dense in X?

(7mks)

(b) Let
$$X=[a,b,c,d]$$
 with $\tau_X=[[a,b],[a],[b],X,\emptyset]$ and Let



f ______

Show that the function f is a homomorphism.

(5mks)

(c) Let $f: X \to Y$ be a constant function. Prove that then f is continuous relative to

 $\tau_{\scriptscriptstyle X}$ and $\tau_{\scriptscriptstyle Y}$.

(4mks)

(d) (i) Let X = [a, b, c, d, e]. Determine whether or not the class

 $\tau_A = \begin{bmatrix} [a,b,c], [a,b,c,d], [a,b,d], X, \emptyset \end{bmatrix} \text{ of subsets of } X \text{ is a topology on } X$

(4mks)

- (ii) Let $^{\tau}$ be a topology on a set X consisting of four sets i.e. $\tau = [X, ^{\emptyset}, A, B]$. What conditions must A and B satisfy? (3mks)
- (e) Prove that if A is a subset of a discrete topology, then set of its derived points A is empty (6mks)

QUESTION TWO: (20 MARKS)

(a) Consider the following topology on X = [a, b, c, d, e] and

 $\tau = [[a], [a,b], [a,c,d], [a,b,c,d], [a,b,e], X,\emptyset]$. If $A = \{a,b,c\}$. Find

- (i) The exterior of A (3mks)
- (ii) The boundary of A (2mks)

- (iii) Hence show that the boundary of A, $\delta A = A \cap X'/A$ (3mks)
- (b) Let $A \subset X$, where X is a non-empty topological space. Prove that $\acute{A} = \delta A \, A^0$ (7mks)
- (c) Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that the composite function $g \circ f$ is continuous (5mks)

QUESTION THREE: (20 MARKS)

- (a) Let $p \in X$ and denote N_p the set of all neighborhood of a point p . Prove that
 - (i) $N_p \neq \emptyset \forall N \in N_p, p \in N$
 - (ii) $\forall pairs N, M \in N_P, N \cap M \in N_P$
 - (iii) If $N \in N_P$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_P$

(6mks)

- (b) Let $f: x_1 \to x_2$ where $x_1 = x_2 = \{0,1\}$ and are such that $(x_1, D) \land (x_2, \$)$ be defined by f(1) = 1 and f(0) = 0. Show that f is continuous whereas f^{-1} is not. (6mks)
- (c) Distinguish the following terms as used in topology
 - (i) An indiscrete topology and Sierpinski topology
 - (ii) A base for the topology $^{\tau}$ and a local basis at the point p
 - (iii) A $T_1 \wedge T_2$ space
 - (iv) A regular space and a normal space (8mks)
