CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION ARTS

MATH 100: GENERAL MATHEMATICS

STREAMS: BeD Arts Y1S1 TIME: 2 HOURS

DAY/DATE: MONDAY 13/08/2018 2.30 P.M - 4.00 P.M

INSTRUCTIONS:

• Answer question **ONE** and **TWO** other questions

• Sketch maps and diagrams may be used whenever they help to illustrate your answer

• Do not write on the question paper

• This is a **closed book exam**, No reference materials are allowed in the examination room

• There will be **No** use of mobile phones or any other unauthorized materials

• Write your answers legibly and use your time wisely

QUESTION ONE: [30 MARKS]

a. State the properties of real numbers in the equations below

[3 Marks]

i.
$$3(2x+5)=6x+15$$

ii.
$$14(8) = 8(14)$$

iii. $(7+8)+6=7+(8+6)$

b. Classify the following numbers

[3 Marks]

i. ½

 $\sqrt{5}$

ii.

 $\sqrt{-4}$

iii.

$$\frac{4^{1.5} \times 8^{\frac{1}{3}}}{2^2 \times 32^{-\frac{2}{5}}}$$

c. Evaluate without using a calculator

[5 Marks]

d. Factorize the expression $3x^2 + 5x + 0.75$

[4 Marks]

e. Solve logx=1+log(x-3)

[3 Marks]

f. The function f is defined by f(x) = . Evaluate f(-3)

[2 Marks]

g. Which is steeper at x=2 between the curves $y=x^3+2x+5$ and $y=x^3-2x^2+2$?

[5 Marks]

[2 Marks]

h. A survey of 500 randomly chosen individuals is conducted. The individuals are asked to name their favorite sport. The pie chart in Figure 1 summarizes the results of this survey.

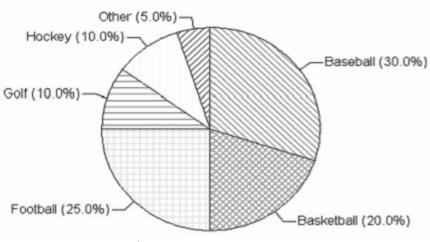


Figure 1

- (i) How many individuals in the 500 gave football as their favorite sport?
- (ii) How many gave a sport other than basketball as their favorite sport? [3 Marks]

QUESTION TWO: [20 MARKS]

a. Use long division method to show that $2x^3+x^2-13x+6$ is divisible by (x-2)

Confirm your result above using the factor theorem.

Hence solve $2x^3 + x^2 - 13x + 6 = 0$ [10 Marks]

$$\frac{x+1}{x-1} = x-3$$

b. Solve the quadratic equation [5 Marks]

 $y = 2x^2 + 3$ c. Differentiate the function from first principles [5 Marks]

QUESTION THREE: [20 MARKS]

- a. Functions f and g are defined by f:x3x-5 and g:x3-2x. Evaluate:
 - (i) (f+g)(-1) [2 Marks]
 - (ii) f(2x)-4g(x) [3 Marks]
 - (iii) $f^{-1}(10)$ [3 Marks]
 - (iv) (gf)(x) [2 Marks]
- b. Using the functions f(x) and g(x) in (a) above show that $(f \circ g)(x) \neq (g \circ f)$ [4]

 Marks]

c. Given the function whose equation below

$$f(x) = \begin{cases} 3x^2 + 4, & \text{if } x \le 4 \\ 10, & \text{if } -4 \le x \le 15 \\ 1 - x & \text{if } x > 15 \end{cases}$$

Calculate

QUESTION FOUR: 20 MARKS

a) Evaluate the following

(i)
$$\log_2 73.45$$
 (using a calculator) [2]

Marks]

(ii)
$$3\log 5 - \frac{1}{2}\log 2500 + 2\log 20$$
 (without the use of a calculator) [4]

Marks]

b) Show that
$$\sqrt[lm]{\frac{a^c}{a^m}} \times \sqrt[mn]{\frac{a^m}{a^n}} \times \sqrt[nl]{\frac{a^n}{a^l}} = 1$$
 [4 Marks]

$$\frac{x^2 + 2}{x^2}$$

$$\frac{x^2 + 2}{x - 5}$$
c) Find the gradient of the curve , at the point x = 1 [4 Marks]

d) Find $\frac{dy}{dx}$ of the following using the indicated techniques in the bracket

i.
$$y = (-x^2 + 2)(5x^3 + 4)$$
 (Product rule) [3 Mark]

ii.
$$\begin{matrix} 2x+1 \\ \vdots \\ i \end{matrix}$$
 (Chain rule) [3 Marks]

QUESTION FIVE: [20 MARKS] The data given below refer to the gain of each of a batch of 40 transistors, expressed correct to

fer to the gain of each of a batch of 40 transistors, expre	ransistors	istors,	ors, exp	expres	ssed c	correct	t to			
the nearest whole number. Form a frequency distribution for these data having 4 classes from										
						[3 N	1arks	3]		
74 76 89 82 84										
1 86 85 87 88										
1 73 89 82 79										
80 85 77 84 78										
3 82 79 80 77										

Calculate the	i. Mean	[3 Marks]
	ii Median	[3 Marks]
	iii Mode	[3 Marks]
	iv 6 th decile	[3 Marks]
	v Standard deviation	[5

Marks]

•••