CHUKA

UNIVERSITY SUPPLEMENTARY/SPECIAL EXAMINATIONS.

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN PHYSICS

MATH 113/123: VECTORS AND MECHANICS
STREAMS:
TIME: 2 HOURS

DAY/DATE: THURSDAY 13/09/2018
8.30 A.M - 10.30 A.M

QUESTION ONE - [30 MARKS]
(a) (i) If $\boldsymbol{A B}=\boldsymbol{a}$ and $\boldsymbol{A} \boldsymbol{C}=\boldsymbol{b}$, show that the area of the triangle ABC is given by Area $=\begin{gathered}a b \\ i \\ i \\ a . b \\ i \\ i \\ i \\ \frac{1}{2} \sqrt{i}\end{gathered}$
[4 Marks]
(ii) Hence or otherwise find the area of the triangle whose vertices are $\mathrm{A}(1,-1,3), \mathrm{B}(-1,1,3)$ and $\mathrm{C}(-2,1,1)$.
(b) A particle moving in a straight line with constant acceleration travels 10 m in the first second and 15 m in the second second. Find:
(i) the initial velocity and the acceleration.
(ii) the distance travelled in the third second.
(c) Given $\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a} \cdot \boldsymbol{c}$, show that \boldsymbol{a} is perpendicular to $\boldsymbol{b} \boldsymbol{-} \boldsymbol{c}$.
(d) The resultant of two forces 4P and 5P acting at a point is $\sqrt{11} \mathrm{P}$. Find:
(i) the angle between the forces
(ii) the direction of the resultant to the horizontal
(iii) the line of action of the resultant.

MATH 113/123

QUESTION TWO - [20 MARKS]
(a) State without proof Lami's theorem.
(b) A particle of mass 3 kg is held in equilibrium on a smooth plane of angle 36° to the horizontal by the force \mathbf{P} Newton acting at an angle of 48° to the plane. Find the value of \mathbf{P} and the normal reaction of the plane on the particle.
(c) If \boldsymbol{a} and \boldsymbol{b} are two non-zero vectors, show that vector addition is commutative.
[5 Marks]
(d) A particle moving in a straight line with constant acceleration travels 10 m in the first second and 15 m in the second second. Find:
(i) the initial velocity and the acceleration.
[4 Marks]
(ii) the distance travelled in the third second.
[4 Marks]

QUESTION THREE - [20 MARKS]

(a) A helicopter, initially at rest on the ground, rise vertically with constant acceleration. When it is at a height of 60 m , its upward speed is $5 \mathrm{~m} / \mathrm{s}$. When it is at a height of 240 m , and still rising, an object A is released from the helicopter. Using $g=\frac{10 m}{s^{2}} \quad$, calculate:
(i) The initial velocity of A.
(ii) The time that A takes to reach the ground.

After A is released, the helicopter continues to rise with a different constant acceleration. When it is at a height of 350 m and rising with a speed of $15 \mathrm{~m} / \mathrm{s}$, a second object B is released.
(i) Show that B takes 10 s to reach the ground.
(ii) Find the time that elapses between the impacts of A and B on the ground. [6 Marks]

