CHUKA

UNIVERSITY

EXAMINATION FOR THE AWARD OF BACHELOR OF

MATH 114/124: GEOMETRY AND LINEAR ALGEBRA

STREAMS:

TIME: 2 HOURS

DAY/DATE: THURSDAY 13/09/2018	8.30 AM – 10.30 AM
INSTRUCTIONS:	

QUESTION ONE (30 MARKS)

(a) Determine the centre and the radius of the circle whose equation is	
$x^2 + y^2 - 4x - 2y - 15 = 0$.	(4 marks)

(b) Find the equation of a circle whose centre is at the point (2,3) and which passes through the point (2,2) in the form $ax^2+by^2+cx+dy+f=0$ (5 marks)

(c) A line L_1 passes through (1,2) and has a gradient of 5. Another line L_2 is perpendicular to L_1 and meets it at the point where x=4. Find the equation of L_2 . (5 marks)

- (d) A plane has the equation 2x+3y+6z+28=0. Calculate the shortest distance of the point (-1,1,1) from the plane. (3 marks)
- (e) Find the equation of the hyperbola in standard form if its centre is the origin and the points $(6,-1) \wedge (8,\sqrt{8})$ lie on it. (4 marks)

(f) Solve the quadratic equation
$$x^2 - \frac{2}{5}x + \frac{1}{5} = 0$$
 (4
marks)
(g) Find the eccentricity of $\frac{y^2}{25} - \frac{x^2}{4} = 1$ (5

marks)

QUESTION TWO (20 MARKS)

- (a). Analyze fully and graph the equation $x^2+4y^2+4x-8y+7=0$
- (b) If **AB=a** and **AC=b**, show that the area of the triangle ABC is given by Area= $\begin{array}{c} ab \\ i \\ a \\ i \\ i \\ i \\ i \\ \sqrt{i} \\ \sqrt{i} \end{array}$

(4 Marks)

(c) Hence or otherwise find the area of the triangle whose vertices are A(1,-5,3), B(-1,1,6) and C(3,0,1). (4 Marks)

(12marks)

QUESTION THREE (20 MARKS)

(a) Use matrix inverse method to solve $2x+y-4z=3$	
x + 2y - z = 7	
z - y + 3x = 4	(11 Marks)
(b). Convert $4xy = c^2$ into polar coordinates. marks)	(3
(c) Given that $Z_1 = 5i+9$ and $Z_2 = 2i-3$ find	
(i) $Z_1 Z_2$	(2 marks)

(ii)
$$aandbgiven \frac{Z_2}{Z_1} = ax+bi$$
 (4)

marks)
