CHUKA

UNIVERSITY EXAMINATIONS
THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (ARTS AND SCIENCE), BACHELOR OF SCIENCE (GENERAL) AND BACHELOR OF ARTS (GENERAL)

MATH 315: COMPLEX ANALSIS

STREAMS: BED (SCI \& ARTS), BSC (GEN), BA (ECON \& MATHS)TIME: 2 HOURS
DAY/DATE: WEDNESDAY 11/4/2018
11.30A.M. - 1.30 P.M.

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

(a) Given that ω_{n} is an nth root of unity, show that $1+\omega_{n}+\omega_{n}^{2}+\omega_{n}^{n-1}=0$ [3 marks]
(b) Find the image of $|z-3 i|=4$ under the mapping $w=\frac{1}{z} \quad$ [3 marks]
(c) Solve the equation $\cos z=-2 \quad$ [4 marks]
(d) Show that the function $f(z)=\frac{\sin z}{z}$ has a removable singularity at $z=0 \quad$ [3 marks]
(e) Evaluate the following complex integrals
(i) $\int \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z+4)} d z$ where C is the circle $|z|=3$ [3 marks]
(ii) $\int \frac{e^{2 z}}{(2 z+1)^{4}} d z$ where C is the circle $|\mathrm{z}-1|=3$
[3 marks]
(f) Find the locus of the points z in the complex plane such that $|z-2 i|=|z+2|$
[3 marks]
(g) Find the analytic function $w=f(z)$ from its known real part $u(x, y)=2 e^{x} \cos y$
[4 marks]
(h) Find the Maclaurin's series for the function $f(z)=\sin z \quad$ [3 marks]

MATH 315

QUESTION TWO (20 MARKS)

(a) (i) Given that $z=r e^{i \theta}$, show that $\operatorname{Re}[\log (z-1)]=\frac{1}{2} \log \left(1-2 r \cos \theta+r^{2}\right)$ for $z \neq 1$.
[4 marks]
(ii) Show that the equation above satisfies the Laplace equation for $z \neq 1$.[4 marks]
(b) Determine the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^{3} 4^{n}}$
[5 marks]
(c) Prove that the polar form of the Cauchy-Riemann equations can be written as $\frac{\partial u}{\partial r}=\frac{1 \partial v}{r \partial \theta}$

$$
\begin{equation*}
\frac{\partial v}{\partial r}=\frac{1 \partial u}{r \partial \theta} \tag{7marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

(a) (i) State and prove the Cauchy's theorem of integration.
(ii) Hence show that $\oint_{c} \frac{e^{2 z}}{z^{2}-3} d z=0$ where $C:=|z+2 i|=1$
[7 marks]
(b) Evaluate the integral $\frac{1}{2 \pi i} \int \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ around the circle c with the equation $|z|=3$
[5 marks]
(c) State without proof the residue theorem and use it to evaluate the integral

$$
\begin{equation*}
\int_{c} \frac{z^{2}+5}{(z+2)^{3}\left(z^{2}-5\right)} d z C ;|z-2 i|=6 \tag{8marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

(a) Let z_{1}, z_{2} and z_{3} are complex numbers, show that;
(i) $\quad\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
[6 marks]
(ii) $\quad\left|z_{2}\right| \neq\left|z_{3}\right|$ then $\frac{\left|z_{1}\right|}{\left|z_{2}+z_{3}\right|} \leq \frac{\left|z_{1}\right|}{\left|\left|z_{2}\right|-\left|z_{3}\right|\right|}$
[2 marks]
(b) Show that $\sin ^{-1} \mathrm{z}=-\mathrm{ilog}\left[i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right.$ and $\cos ^{-1} z=-i \log \left[z+i\left(1-z^{2}\right)^{\frac{1}{2}}\right.$ hence find $\tan ^{-1} Z$
(c) Verify that the function $f(z)=x^{3} \sin y-3 x y^{2}+i\left(3 x^{2} y-y^{3} \cos 2 x\right.$ is not analytic.

MATH 315

QUESTION FIVE (20 MARKS)

(a) Differentiate poles, non-isolated singularities and essential singularity using an appropriate example in each case.
(b) Expand the function $f(z)=\cos z$ about $z=\frac{\pi}{4}$
(c) Find the Laurent series for the function $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ about $z=1$ and identify the nature of singular point at $z=1$
[4 marks]
(d) Expand the function $f(z)=\frac{1}{(z+1)(z+3)}$ using a Laurent series about
(i) $1<|z|<3$
(ii) $0<|z+1|<2$
[6 marks]

