MATH 315

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (ARTS AND SCIENCE), BACHELOR OF SCIENCE (GENERAL) AND BACHELOR OF ARTS (GENERAL)

MATH 315: COMPLEX ANALSIS

STREAMS: BED (SCI & ARTS), BSC (GEN), BA (ECON & MATHS)TIME: 2 HOURS

DAY/DATE:WEDNESDAY 11/4/201811.30A.M. - 1.30 P.M.INSTRUCTIONS:ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

(a)	Given that ω_n is an nth root of unity, show that $1 + \omega_n + \omega_n^2 + \omega_n^{n-1} = 0$	[3 marks]	
(b)	Find the image of $ z - 3i = 4$ under the mapping $w = \frac{1}{z}$	[3 marks]	
(c)	Solve the equation $\cos z = -2$	[4 marks]	
(d)	Show that the function $f(z) = \frac{\sin z}{z}$ has a removable singularity at $z = 0$	[3 marks]	
(e)	Evaluate the following complex integrals		
	(i) $\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z+4)} dz$ where C is the circle $ z = 3$	[3 marks]	
	(ii) $\int \frac{e^{2z}}{(2z+1)^4} dz$ where C is the circle $ z-1 =3$	[3 marks]	
(f)	Find the locus of the points z in the complex plane such that $ z - 2i = z $	+ 2	
		[3 marks]	
(g)	Find the analytic function $w = f(z)$ from its known real part $u(x, y) = 2e^x \cos y$		

[4 marks]

(h) Find the Maclaurin's series for the function $f(z) = \sin z$ [3 marks]

MATH 315

QUESTION TWO (20 MARKS)

(a) (i) Given that
$$z = re^{i\theta}$$
, show that $Re[log(z-1)] = \frac{1}{2}log(1 - 2r\cos\theta + r^2)$ for $z \neq 1$. [4 marks]

(ii) Show that the equation above satisfies the Laplace equation for $z \neq 1.[4 \text{ marks}]$

(b) Determine the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$ [5 marks]

(c) Prove that the polar form of the Cauchy-Riemann equations can be written as $\frac{\partial u}{\partial r} = \frac{1\partial v}{r\partial \theta}$ $\frac{\partial v}{\partial r} = \frac{1\partial u}{r\partial \theta}$ [7 marks]

QUESTION THREE (20 MARKS)

- (a) (i) State and prove the Cauchy's theorem of integration.
 - (ii) Hence show that $\oint_c \frac{e^{2z}}{z^2-3} dz = 0$ where C := |z+2i| = 1 [7 marks]

(b) Evaluate the integral $\frac{1}{2\pi i} \int \frac{e^{zt}}{z^2(z^2+2z+2)} dz$ around the circle c with the equation |z| = 3[5 marks]

(c) State without proof the residue theorem and use it to evaluate the integral

$$\int_{c} \frac{z^{2}+5}{(z+2)^{3}(z^{2}-5)} dz C; |z-2i| = 6$$
 [8 marks]

QUESTION FOUR (20 MARKS)

(a) Let z_1 , z_2 and z_3 are complex numbers, show that;

(i)
$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$$
 [6 marks]

(ii)
$$|z_2| \neq |z_3| \text{then} \frac{|z_1|}{|z_2+z_3|} \le \frac{|z_1|}{||z_2|-|z_3||}$$
 [2 marks]

- (b) Show that $\sin^{-1}z = -i\log\left[iz + (1-z^2)^{\frac{1}{2}} \text{ and } \cos^{-1}z = -i\log\left[z + i(1-z^2)^{\frac{1}{2}} \text{ hence}\right]$ find $\tan^{-1}z$ [7 marks]
- (c) Verify that the function $f(z) = x^3 \sin y 3xy^2 + i(3x^2y y^3 \cos 2x \text{ is not analytic.}$ [5 marks]

MATH 315

QUESTION FIVE (20 MARKS)

(a)	Differentiate poles, non-isolated singularities and essential singularity using an		
	approp	priate example in each case.	[6 marks]
(b)	Expan	d the function $f(z) = \cos z$ about $z = \frac{\pi}{4}$	[4 marks]
(c)	Find t	Find the Laurent series for the function $f(z) = \frac{e^{2z}}{(z-1)^3}$ about $z = 1$ and identify the natu	
	of sing	gular point at $z = 1$	[4 marks]
(d)	Expan	d the function $f(z) = \frac{1}{(z+1)(z+3)}$ using a Laurent series about	
	(i)	1 < z < 3	
	(ii)	0 < z + 1 < 2	[6 marks]
