CHUKA

UNIVERSITY

UNIVERSITY SUPPLEMENTARY/SPECIAL EXAMINATIONS.

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (GENERAL)

MATH 401: MEASURE THEORY

STREAMS: BSC (GENERAL)

TIME: 2 HOURS

DAY/DATE: TUESDAY 24/07/2018

11.30 A.M - 1.30 P.M

INSTRUCTIONS:

• Answer Question ALL the Questions

QUESTION ONE: [30 MARKS]

)	Define the following:		
	(i)	A Lebesque- measurable subset E of R	[2 Marks]
	(ii)	An algebra of a non-void set X	[2 Marks]
	(iii)	σ- algebra	[1 Mark]
	(iv)	A measurable space	[1 Mark]
	(v)	A measure space	[1 Mark]

- **b)** Let $\mu^{i}(A)=0$, show that $\mu^{i}(A\cup B)=\mu^{i}(B)$ [5 Marks]
- c) Define a measurable function and show that a constant function on a measurable set is measurable.
 [5 Marks]
- d) Define the characteristic function on a measurable subset E of R and show that it is measurable [5 Marks]
- e) Define the probability measure. [4 Marks]
- f) State the monotone convergence theorem. [4 Marks]

QUESTION TWO: [20 MARKS]

MATH 401

- a) Prove that if E is non-Lebesque measurable subset of R, then there exists a subset A of E such that 0<Mⁱ[A]<∞ [6 Marks]
- b) Show that if $\mu * (A) = 0$, then A is measurable hence or otherwise show that the set of rational numbers is measurable. [6 Marks]
- c) Let A be a Lebesgue measurable subset of R, and B be any other subset of R. show that $\mu * (A \cup B) + \mu * (A \cap B) = \mu * (A) + \mu * (B)$. [8 Marks]

QUESTION THREE: [20 MARKS]

a) Prove the following properties of $\mu i i$ i. $\mu^i(\varphi) = 0$ [2 Marks] ii. $\mu^i(\{x\}) = 0$ [3 Marks] iii. If $A \subseteq B$ then $\mu * (A) \le \mu * (B)$ [3 Marks]

[4

- iv. μ^{*ii} is countably subadditive Marks]
- **b)** Let (X, x) be a measurable space and $f: X \to R^{\flat}$ be a given function. Show that the following statements are equivalent
 - i. $[x \in X : f(x) > a](i f^{-1}i) \in x \text{ for all } a \in R^i$ ii. $[x \in X : f(x) \ge a](i f^{-1}[a, \infty]) \in x \text{ for all } a \in R^i$ iii. $[x \in X : f(x) < a](i f^{-1}i) \in x \text{ for all } a \in R^i$ iv. $[x \in X : f(x) \le a](i f^{-1}[-\infty, a]) \in x \text{ for all } a \in R^i$ [8 Marks]