

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2018/2019 ACADEMIC YEAR

FIRST YEAR **SECOND** SEMESTER EXAMINATION FOR, BACHELOR OF SCIENCE APPLIED STATISTICS AND PROGRAMMING, BACHELOR OF MATHEMATIS AND ECONOMICS

AMM 104 –CALCULUS 11

DURATION: 2 HOURS

DATE: 25/4/2019

TIME: 2:00-4:00

Instructions to candidates:

- 1. Answer question One and Any Other Two questions
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a)	Evaluate $\int_{1}^{3} (X^2 - 1) dx$	3mks	
b)	Evaluate $\int_{1}^{2} 2e^{5x} dx$ correct to five significant figures		3mks
c)	Show that $\int tan\theta \ d\theta = \ln \sec \theta + c$		4mks
d)	Find $\int \frac{d\theta}{1+\cos\theta}$	3mks	
e)	Determine $\int_0^1 2x \ e^{3x} dx$		4mks
f)	Find the area bounded by x-axis, y-axis, the curve $y = e^x$ and the line $x = 2$		3mks
g)	Find the volume generated by rotating the area bounded by $y = 2x$, $y = 6$ and x	= 0 and	y axis
			3mks

h) Evaluate
$$\int_0^{\ln} \frac{dx}{\cosh x + 3\sinh x + 1}$$
 3mks

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a) Integrate xe^x with respect to x	3mks
b) Resolve $\frac{4-2x}{(x^2+1)(x+1)^2}$ into partial fractions hence integrate with respect to X	7mks
c) Evaluate $\int_0^1 \frac{1}{9+4x^2}$ correct to four significant figures	5mks
d) Evaluate $\int_0^3 3x\sqrt{3x^2 + 9}$ taking positive roots only	5mks

QUESTION THREE (20 MARKS)

a) Obtain reduction formula for $I_n = \frac{1}{2}$	$\int \sin^n x dx$, hence evaluate \int	$\sin^4 x dx$	6mks
---	---	----------------	------

b) Calculate
$$\iint_R f(x, y) dA$$
 for $f(x, y) = 1 - 6x^2$ and $\mathbb{R} \ 0 \le x \le 2, -1 \le y \le 1$
5mks

c) Find the Taylor series generated by fx = 1/x at x = 0 and when the series converges 5mks

4mks

d) Determine $\int x sinx dx$

QUESTION FOUR (20 MARKS)

a) Find the average value of f(x,y,z) = xyz over the cube bounded by the coordinate planes and the planes x=2, y=2 and z =2 in the first octant. 6mks

b) Find the center of mass of a solid of constant density δ bounded below by the disk R: X²-Y² \leq 4 in the plane Z=2 and above by the paraboloid Z=4-X²-Y² 7mks

c) Use the trapezium rule with five ordinates to evaluate $\int^{0.8} e^{x^2} dx$ 5mks

d) Evaluate $\int (x^2 - 2x + 5) dx$ 2mks