

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2018/2019 ACADEMIC YEAR

FIRST YEAR **SECOND** SEMESTER EXAMINATION FOR, BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH PROGRAMMING

SMA2200 - CALCULUS III

DURATION: 2 HOURS

DATE: 23RD APRIL 2019

TIME: 9.00 - 11.00 A.M

Instructions to candidates:

- 1. Answer question One and Any Other Two questions
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

- a. Explain what is meant by a limit of a sequence. [2 Marks]
- b. Find a formula for the nth partial sum S_n given the series.

$$\sum_{n=1}^{\infty} \frac{2n}{3n-2} - \frac{2n+4}{3n+4}$$
 is the series convergent or divergent? [5 Marks]

c. Use series expansion to evaluate
$$\lim_{x \to 0} \frac{e^x + x - 1}{\sin x}$$
. [4 Marks]

- d. Determine the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n4^n}$ [5 Marks]
- e. Evaluate $\int x^5 (\ln x)^2 dx$ using reduction formula . [3 Marks]

f. Evaluate
$$\int_{\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$
 [5 Marks]

g. Find the Fourier series expansion of f(x) = 5x + 1 for $-1 \le x \le 1$ [6 Marks]

QUESTION TWO (20 Marks)

a. Show that $n \int \cos^n x dx = \sin x \cos^{n-1} x + (n+1) \int \cos^{n-2} x dx$ and evaluate $\int_0^{\frac{\pi}{2}} \cos^4 x dx$. [9 Marks]

b. Compute
$$\int_{0}^{4} \int_{0}^{\sqrt{4-y}} (4-x^2-y) dx dy$$
 [5 Marks]

c. Show that if
$$f(x, y, z) = \ln(x^2 + y^2 + z^2)^{\frac{1}{2}}$$
, then $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ [6 Marks]

QUESTION THREE (20 Marks)

a. Find the Maclaurin's series expansion for the function $y(x) = \sin x$ up to the term in x^3 [4 Marks]

b. Evaluate
$$\lim_{x \to 0} \left[\frac{1 - \sqrt{1 + 2x}}{1 - \sqrt{1 - 3x}} \right]$$
 using binomial expansion. [6 Marks]

- c. Show that the series $\sum_{k=2}^{\infty} 3\left(-\frac{1}{5}\right)^k$ converges and find its sum. [5 Marks]
- d. Find the volume of the resulting solid rotated about the x axis for the region R bounded by the curves y = x and $y = x^2$. [5 Marks]

QUESTION FOUR (20 Marks)

a. Find the area of the surface generated by rotating one arc of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$ about the x - axis. [5 Marks]

b. Given
$$v = \left(\sqrt{x^2 + y^2 + z^2}\right)^{-1}$$
, show that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0$ [7 Marks]

- c. By interchanging the order of integration evaluate the integral $\int_{0}^{1} \int_{0}^{3} (3y + x) dx dy$ [4 Marks]
- d. Evaluate $\int_{0}^{\infty} \frac{1}{4+x^2} dx$ and determine whether the integral is convergent. [4 Marks]