

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS FIRST YEAR FIRST SEMESTER

FOR THE DEGREE IN INFORMATION **TECHNOLOGY**

COURSE CODE: BIT 111

COURSE TITLE: DISCRETE STRUCTURES

FOR IT (A)

DATE: 10/012018

TIME: 2.00PM-5.00 PM

INSTRUCTIONS

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

		Q	DUESTION ONE [30 MARKS]		
a	. Diffe		e following terms and concepts as used in	n the study of discrete	
	struct	ures in IT.?		[6 marks]	
	i.	Finite and infinite	sets	[Marks]	
	ii.	A function and a re	elation		
	iii.	Permutation and co	combination		
b.	Given	sets: $A = \{1, 2, 3, 4\}$	and $B = \{3, 4, 5\}$. Define the Cross prod	uct of A and B	
				[3 marks]	
c.	Verify	that the proposition	$1 p \lor \neg (p \land q)$ is a tautology	[4 marks]	
d.	Evalua	ite:		[4 marks]	
	i.	₅ P ₃ ii. ₆ C	4	[· marks]	
e.	State th	ne Pigeonhole Princ	ciple. Using this principle, determine the	laget number of	
	student	s in a group who ha	we been born in the same month.		
f.					
	Otherw	ise, compute the lea	ast common multiple LCM (75; 12).		
g.	Let f (x	$x = 12 x^2 - 17$. Find t	the inverse $f'(x)$ of $f(x)$.	[4 marks]	
h.			trate an OR-gate and AND-gate	[3 marks]	
			,	[5 marks]	
		QUE	ESTION TWO [20 MARKS]		
Li	st the el		wing sets, here $N=\{1,2,3,\}$	[3 marks]	
		$A = \{x: x \in \mathbb{N}, 3 < x < 12\}$		[S marks]	
	ii. I	$B = \{ x : x \in \mathbb{N}, x \text{ is even} \}$	ren, x<13} 2, +, ·		
	iii. ($C = \{x: x \in \mathbb{N}, 4 + x = 3\}$	} 4+1=5		
A	universa	al set U is defined as	$U=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ a	and the subjects A B	
and	d C are	such that $A=\{0,2,4,6\}$	6}, B={1, 3, 6, 7, 8, 9} and C={6, 8, 9,1	1}. Find	
		$A \cup B$		[2 marks]	
	ii. A	$\cap C$	2/76/12	[1 mark]	
	iii. A	\cap ($C \cup B$)	3/75/12	[2 marks]	
	iv. (.	$A \cup B \cup C)'$	14	[2 marks]	
)	

a.

b.

gobte	(1,1) (2,2) (3,3), (4,4) (6,4)	
b, at R	(P) (P) (P) 3). (ALL) (P) 4	6,6
	176	

Consider the following data for 120 Information Technology Students concerning the languages they study: 65 study Java, 45 study Python, 42 study Ruby, 20 study Java and Python, 25 study Java and Ruby, 15 study Python and Ruby and 8 study all the three languages.

i.	Represent these information on a Venn diagram	[4 marks]	20-8
			20- 8
	Find the number of students who study only one Language	[1 marks]	28-8
iii.	Find the number of students who study exactly two languages	[1 marks]	
iv.	Find the number of students who study at least a languages Language	[2 marks]	
v.	Find the number of students who do NOT study any Language	[2 marks]	

QUESTION THREE [20 MARKS]

a. i. Explain whether "I+2=6", "2+I=3", "x+2=4" are prepositions. [3 marks] ii. Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes each of the following statements: $\neg p$; $p \land q$; $p \lor q$; $q \lor \neg p$. [4 marks]

b. Show that the propositions $\neg (p \land q)$ and $\neg p \lor \neg q$ are logically equivalent. [4 marks]

c. i. Using a suitable Example Logic Gates [3 marks]

ii. Construct a truth table and a logic diagram that implements the following expression.

 $W=\overline{X+Y}+X\overline{Z}$ [6 marks]

QUESTION FOUR [20 MARKS]

a. Given the functions $f(x) = 2x^2-3$ and h(x) = 3x+2. Find

i. The domain and the range of h(x) [2 marks]

ii. $f(\mathbf{g}(\mathbf{x}))$ [4 marks]

iii. f(2) [2 marks]

iv. whether h(x) is one-to-one mapping [2 marks]

b. Let A= {1, 2, 3, 4, 6} and R be a relation of A defined by "x divide y" written x|y, there exist an integer z such that xz=y.

i. Write R as a set of ordered pairs. [4 marks]

ii. Draw its directed Graph. [3 marks]

iii. Find the inverse relation R⁻¹ of R. can R⁻¹ be described in words. [3 marks]

Page 3 of 4 (3x+2) 1xz = 4 3x(3x+2) + 2(3x+2) 1 = 24 + 24 = 2

QUESTION FIVE [20 MARKS]

a. Prove by contradiction that if $5n + 1$ is an even integer, then n is even	[5 marks]		
b. i. Use the Euclidean Algorithm to show that 34 and 105 are relatively prime	e. [3 marks]		
ii. Find the inverse of 34 modulo 105.	[3 marks]		
c. A class contains 10 students with 6 men and 4 women. Find the number n	A class contains 10 students with 6 men and 4 women. Find the number n of ways to:		
i. Select a 4-member committee from the students.	[3 marks]		
ii. Select a 4-member committee with 2 men and 2 women.	[3 marks]		
iii. Elect a president, vice president, and treasurer.	[3 marks]		