9516/1 D.T.E. MATHEMATICS Paper 1 March/April 2010 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN TEACHER EDUCATION

MATHEMATICS

Paper 1

3 hours

Tutor Praíse Joshua

INSTRUCTIONS TO CANDIDATES

- 1. You should have the following for this examination:
 - Answer booklet
 - Calculator and/or mathematical tables
- 2. This paper consists of FOUR sections; A, B, C and D.
- 3. Answer SIX questions as follows:
 Question ONE in Section A is compulsory.
 Answer any THREE questions from Section B.
 Answer any ONE question from Section C.
 Answer any ONE question from section D.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: (25 marks)

Question 1 is compulsory.

- 1. (a) Determine the general matrix of a linear transformation which rotates a cartesian plane through an angle θ about the origin. (3 marks)
 - (b) Draw the curve $y^2 = x(x-2)$ for values of $x: -3 \le x \le 5$ Determine the equation(s) of the line(s) of symmetry. (5 marks)
 - (c) Find the length of the tangent to the circle $x^2 + y^2 4x 6y + 9 = 0$ from the point (5,7). (4 marks)
 - (d) A door, ABCD, 95 cm wide and 210 cm high is opened through an angle of 30° as shown in the figure below.

Calculate angle CAC'.

(4 marks)

(e) In a triangle PQR, S and T are points on PQ and QR respectively such that $PS = \frac{2}{3} PQ$ and $QT = \frac{1}{3} QR$. M is a point on PT such that $PM = \frac{3}{4}PT$. Taking PQ = q and PR = r, express PT, RS and RM in terms of q and r. Hence, show that R, M and S are collinear.

(4 marks)

(f) The heights of 40 boys measured in centimetres are shown in the table below.

Height (cm)	145-150	150-155	155-160	160-165	165-170	170-175	175-180	180-185
Frequency	1	1	4	15	12	3	3	1

- (i) Draw a cumulative frequency curve for the data.
- (3 marks)
- (ii) From the curve, determine the median height and the interquartile range. (2 marks)

SECTION B: CALCULUS & ANALYSIS (45 marks)

Answer any THREE questions from this section.

- 2. (a) Evaluate the following:
 - (i) $\lim_{X \to \infty} \frac{x^2 6x + 12}{5 + 2x^2}$

(4 marks)

(ii)
$$\lim_{X \to 0} \frac{6x - \sin 2x}{2x + 3\sin x}$$

(4 marks)

- (b) Determine the equation of the tangent to the curve $x^3 + 3xy^2 + y^3 21 = 0$ at point (1, 2). (5 marks)
- (c) The area of a circle is increasing at a rate of 5 cm²s⁻¹.

 Find the rate of change of the circumference when the radius is 4 cm. (4 marks)
- 3. (a) Show from first principles that the derivative of $\frac{1}{x}$ is $-\frac{1}{x^2}$. (4 marks)
 - (b) Differentiate with respect to x:

(i)
$$y = x^x$$

(3 marks)

(ii)
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(3 marks)

(c) Evaluate
$$\int_{1}^{4} x^2 \ln x \, dx$$
 (5 marks)

- 4. (a) A closed oil can is made in the form of a right circular cylinder to contain one litre. If the amount of material to be used in making the can is a minimum, determine the dimensions of the can. (5 marks)
 - (b) A curve passing through point (1, -5) has a gradient function of $4x^3$. Find the value of x when y = 10. (3 marks)

(c) Show that
$$\int a^x dx = \frac{e^{x \ln a}}{\ln a} + C$$
 (3 marks)

- (d) Determine the area bounded by the curve $y = x^2 2x$, the x-axis and the ordinates x = -2 and x = 3. (4 marks)
- 5. (a) Determine $\int \frac{x^3 + 5}{x^2 25} dx$ (5 marks)
 - (b) Solve the following differential equations:

(i)
$$\cos x \frac{dy}{dx} + 2y \sin x = \cos x + \cos^2 x$$
 (5 marks)

(ii)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$
, given that $y = 3$ and $\frac{dy}{dx} = 2$ when $x = 0$. (4 marks)

- 6. (a) Find the volume of the solid generated when the area in the first quadrant of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is rotated through 360° about the x-axis. (5 marks)
 - (b) A car with initial velocity 2ms^{-1} moves in a straight line with acceleration, $a = \frac{5}{2} \frac{t}{8} \text{ ms}^{-2}.$ Calculate the distance travelled during the first four seconds. (5 marks)
 - (c) A radioactive substance decays at a rate proportional to its mass. The decay rate is 10 mg per week when its mass is 26 mg.

 If after t weeks, the mass is M mg, find a formula for M in terms of t only.

 (5 marks)

4

9516/1

SECTION C - LINEAR ALGEBRA (15 marks)

Answer any ONE question from this section.

7. (a) Given the matrix $M = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & 5 & 1 \end{pmatrix}$

obtain its inverse M-1, using Cofactors.

(7 marks)

(b) Solve the following set of simultaneous equations using Cramer's rule.

$$x + y + z = 2$$

 $x + 2y + z = 6$
 $6x + 5y + 4z = 8$ (8 marks)

8. (a) Given that $\begin{pmatrix} x & x \\ 3 & x-2 \end{pmatrix}$ is a singular matrix,

determine the values of x.

(2 marks)

(b) Determine the value of λ for which the set of simultaneous equations below have a unique solution:

$$x + y + z = 2$$

$$x + 2y - 3z = 5$$

$$2x + \lambda y - \lambda z = 3\lambda$$

(4 marks)

(c) Given the transformation defined by the matrix $\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$, find its eigen vectors. (8 marks)

SECTION D - NUMERICAL METHODS (15 marks)

Answer any ONE question from this section

9. (a) The following is an extract from a mathematical table.

X	9.000	9.001	9.002	
X^3	729.0	729.2	729.5	

Use either linear interpolation or extrapolation to estimate the value of:

(i) 9.0003³

(2 marks)

(ii) 90.025³

(3 marks)

- (b) Show that the cubic equation $x^3 + 3x 15 = 0$ has only one real root which is in the neighbourhood of x = 2. (3 marks)
 - (ii) The cubic equation $x^3 + 3x 15 = 0$ can be solved using the iterative formula $X_{n+1} = (15 3X_n)^{\frac{1}{3}}$.

 Obtain the root correct to five decimal places using this iterative process.

 (3 marks)
- Using five ordinates, apply Simpson's rule to determine an approximate value of $\int_{0}^{1} \frac{1}{1+x^{2}} dx$, correct to four decimal places. (4 marks)
- 10. (a) Apply Trapezoidal rule to find, correct to eight decimal places, the approximate area of the region bounded by the curve $y = \frac{1}{\sqrt{3 + x^2}}$ between the ordinates x = 1 and x = 4, using six strips of equal width. (5 marks)
 - (b) Using Taylor's series expansion, expand cos (x h) in ascending powers of h up to the term in h⁶, hence determine cos 54.5° correct to four decimal places.
 (10 marks)