STA 2301: TESTS OF HYPOTHESIS Continuous Assessment Test II

INSTRUCTIONS: Attempt ALL questions.

TIME: 1 HOUR

- a) Briefly explain the meaning of the following terms/phrases as used in statistical inference;
 - (i) Unbiased Estimator
 - (ii) Unbiased Test
 - (iii) Consistent Test
 - (iv) Power of a Statistical Test

[4 marks]

b) Let $X_1, X_2, ..., X_n$ be a random sample from the PMF

$$f(x;\theta) = \begin{cases} \theta^{x} (1-\theta)^{1-x}, & x = 0, 1\\ 0, & otherwise \end{cases}$$

i) Show that $T = \sum_{i=1}^{n} X_i$ has a *PMF* which belongs to a one-parameter exponential family of distributions. Hence find a complete sufficient

statistic for θ . [4 marks]

- ii) Find the Maximum Likelihood Estimator (MLE) of θ. [4 marks]
- iii) Determine the Most Powerful (MP) size α test for the null hypothesis $H_0: \theta = \theta_0$ against the alternative $H_1: \theta = \theta_1$ (where $\theta_1 > \theta_0$). Hence deduce the Uniformly Most Powerful (UMP) size α test for H_0 against $H_1: \theta > \theta_0$.

c) Let $X_1, X_2, ..., X_n$ be a random sample from the Poisson distribution with the PMF

$$f(x;\theta) = \begin{cases} \frac{e^{-\theta}\theta^x}{x!}, & x = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$
 $(\theta \neq 0)$

CALL CONTRACTOR STORES

Find the Uniformly Most Powerful (UMP) unbiased size a test for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, where θ_0 is a specified number.

Give an expression for the power function.

[10 marks]

Ething of a