

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY UNIVERSITY EXAMINATIONS 2018/2019 EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

STA 2300: THEORY OF ESTIMATION

DATE: December 10, 2018

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer question ONE (entire section A) and any other two questions in section B.
- 2. Show all your workings, since all steps leading to presented solutions will attract marks.
- 3. No writing is allowed on the question paper which has four printed pages.

SECTION A (30 MARKS)

- 1. (a) Let $f(x,\theta)$ for $\theta \in \Omega$ be some pdf(pmf) and suppose that $\hat{\theta}_1$ and $\hat{\theta}_2$ are possible independent estimators of θ , such that $E[\hat{\theta}_1] = E[\hat{\theta}_2] = \theta$, var $(\hat{\theta}_1) = \sigma_1^2$ and $var(\hat{\theta}_1) = \sigma_2^2$. A new estimator $\hat{\theta}_3$ is defined as $\hat{\theta}_3 = a\hat{\theta}_1 + (1-a)\hat{\theta}_2$.
 - i. Examine θ_3 for unbiasedness.
 - ii. How should the constant a be chosen in order to minimise the variance of θ_3 . [4 marks]

- (b) The reading on a voltage meter connected to a test circuit is uniformly distributed over the interval $(\theta, \theta + 1)$, where θ is the true but unknown voltage of the circuit. Suppose that Y_1, Y_2, \ldots, Y_n denotes a random sample of such readings.
 - i. Show that \bar{Y} is a biased estimator of θ and compute the bias.
 - ii. Find a function of \bar{Y} that is an unbiased estimator of θ .
 - iii. Find the Mean Squared Error of \bar{Y} , when \bar{Y} is used as an estimator of θ .

 [4 marks]
- (c) Suppose that we are to obtain a single observation Y from an exponential distribution with mean θ . Use Y to form a confidence interval for θ with confidence coefficient of 0.90. [3 marks]
- (d) Suppose that X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are independent random samples from populations that are normally distributed with means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 respectively. Show that;
 - i. $\bar{X} \bar{Y}$ is a consistent estimator of $\mu_1 \mu_2$. ii. $\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2 + (Y_i - \bar{Y})^2}{2n-2}$ is a consistent estimator of σ^2 . [4 marks]
- (e) Let Y_1, Y_2, \ldots, Y_n denote independent and identically distributed random variables from a power family distribution with parameters α and θ where $\alpha > 0$ and $\theta > 0$ and $f(y/\alpha, \theta) = \frac{\alpha y^{\alpha-1}}{\theta^{\alpha}}$ for situations where $o \le y \le \theta$. Suppose θ is known;
 - i. Find the moments estimator of a.
 - ii. Identify a complete and sufficient statistic for α. Is the identified statistic a Uniformly Minimum Variance Unbiased Estimator (UMVUE) of α?
 Explain your answer.
- (f) Suppose that $Y_1, Y_2, ..., Y_n$ denotes a random sample from the Weibul density function given by $f(y, \theta) = (\frac{2y}{\theta})e^{\frac{-y^2}{\theta}}$ when y > 0. Find the Minimum Variance Bound Unbiased Estimator (MVBUE) for θ . [4 marks]
- (g) Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a density given by $f(y, \theta) = (\frac{1}{\theta})ry^{r-1}e^{-\frac{y^r}{\theta}}$ for $\theta > 0$ and y > 0, where r is a known positive constant.
 - i. Find a sufficient statistic for θ .
 - ii. Find the Maximum Likelihood Estimator (MLE) of θ .
 - iii. Is the MLE a Minimum Variance unbiased Estimator (MVUE) for θ ?.

 [4 marks]

- (h) Let X_1 and X_2 be a random sample of size 2 from a binomial distribution where the probability of success, p, is not known. Assume that the prior of p is given h(p) = 1 for 0 . Find;
 - i. the posterior distribution of p.
 - ii. the Bayes Estimator of p.

[3 marks]

SECTION B (20 MARKS EACH)

- 2. Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the probability density function $f(y, \theta) = \theta y^{\theta-1}$ for 0 < y < 1 and $\theta > 0$.
 - (a) Show that this density function is a one-parameter exponential family and that ∑_{i=1}ⁿ -ln(Y_i) is complete and sufficient for θ.
 - (b) If $W_i = -ln(Y_i)$, show that $W_i \sim exp(\frac{1}{\delta})$.
 - (c) Show that $2\theta \sum_{i=1}^{n} W_i \sim \chi_{(2n)}^2$ and that $E(\frac{1}{2\theta \sum_{i=1}^{n} W_i}) = \frac{1}{2(n-1)}$.
 - (d) Find the Minimum Variance unbiased Estimator (MVUE) for 0.
- 3. (a) Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a population with mean μ and variance σ^2 . Consider the following three estimators for μ .

 $\hat{\mu}_1 = \frac{1}{2}(Y_1 + Y_2), \, \hat{\mu}_2 = \frac{1}{4}Y_1 + \frac{Y_2 + Y_3 + \dots + Y_{n-1}}{2(n-2)} + \frac{1}{4}Y_n \text{ and } \hat{\mu}_3 = \hat{Y}.$

- i. Show that each of these three estimators is unbiased for μ .
- ii. Find the Efficiency of $\hat{\mu}_3$ relative to $\hat{\mu}_2$ and $\hat{\mu}_1$ respectively.
- (b) Suppose that Y_1, Y_2, \ldots, Y_n constitute a random sample from a population with probability density function $f(y) = (\frac{1}{\theta+1})e^{\frac{1}{\theta+1}}$ when y > 0 and $\theta > -1$.
 - i. Is θ estimable in this case?
 - ii. Assuming that θ is estimable in part 3(b)i, find the Frechet-Crammar-Rao Lower Bound for the unbiased estimators of θ and hence find the most efficient estimator of θ .

- 4. A random variable X has a density function given by $f(x/\theta) = \frac{1}{2}$ for $0 < x < \theta$, where θ is not known.
 - (a) Find the Maximum Likelihood Estimator (MLE) of θ .
 - (b) Suppose that the prior distribution of the said unknown θ is $h(\theta) = \theta e^{-\theta}$ for $\theta > 0$. By considering a quadratic loss function $L(d(x), \theta) = c(\theta)[d(x) \theta]^2$ with $c(\theta) > 0$ and a single observation. Find the decision function which minimises the Bayes Risk.
 - (c) From the usual definitions and meanings, distinguish a MINIMAX estimator from a Bayes estimator, and use your results in part 4b to elaborate this difference if such exists.

THE END