

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2017/2018**

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ENVIRONMENTAL SCIENCE WITH INFORMATION **TECHNOLOGY**

MAIN CAMPUS

NES 305: PRACTICAL ENVIRONMENTAL CHEMISTRY

Date: 14th-February, 2018

Time: 3.30 - 6.30pm

INSTRUCTIONS:

Answer Question ONE and any other THREE.

1. a) Discuss the mechanism of the following;

i) Hydroxyl and hydroperoxyl radical formation in the atmosphere.

(10marks) (5marks)

ii) Oxygen radical formation in the atmosphere.

b) Just below the point where a continuous discharge of pollution mixes with a river, the BOD is 10.9 mg/L and DO is 7.6 mg/L. The river and waste mixture has a temperature of 20°C, a deoxygenation constant of 0.20/day, an average flow speed of 0.30m/s, and an average depth of 3.0m.

- i) Find the time and distance downstream at which the oxygen deficit is a maximum.
- ii) Find the minimum value of DO.

(5marks)

2. Assume the following statistics for CFC-12 (CF₂Cl₂):

Atmospheric residence time = 150 yr

1985 emission rate = 0.44×10^{12} g/yr

1985 atmospheric concentration = 0.40 ppb

Suppose the emission rate of CFC-12 is instantaneously reduced to 50 percent of its 1985 value and held constant thereafter:

i) What would be the final, steady-state atmospheric concentration of CFC-12?

(8marks)

ii) What cut in the emission rate would be required for CFC-12 concentrations to remain constant at its 1985 level of 0.40 ppb?

3. From the following data of volumetric analysis.

	Sample 100 ml	Total ml_of titrant to reach end point				
-	100 1111	Phenolphthalein	Methyl orange -			
- 2	A	- 10	15.5			
	B	14.4	38.6			
	C	83	8.4			
AV.	D	0	12.7			

Calculate the alkalinities of:

i)	hydroxide						(4marks)
ii)	carbonate						(5marks)
iii)	bicarbonate	= ·)		./		-2	(6marks)

- 4. Discuss the mechanisms involved in stratospheric ozone destruction. (15marks)
- 5. A municipal wastewater treatment plant serving a city of 200 000 discharge $1.10 \, \mathrm{m}^3/\mathrm{s}$ of treated effluent having an ultimate BOD of 50.0 mg/L into a stream that has a flow of 8.70 m³/s and a BOD of its own equal to 6.0 mg/L. The deoxygenation constant k_d is 0.20/day.
 - a) Assuming complete and instantaneous mixing, calculate the ultimate BOD of the river just downstream from the outfall. (8marks)
 - b) If the stream has constant cross section so that it flows at a fixed speed equal to 0.30 m/s, estimate the BOD of the stream at a distance 30 000m downstream.

(7marks)

6. The analysis of a sample of water shows the following results in mgll:

$$Na = 20$$
 $C1 = 40$
 $K = 30$ $HCO_3 = 67$
 $Ca = 5$ $SO_4 = 5$
 $Mg = 10$ $NO_3 = 10$

The concentration of stroncium (Sr) is equivalent to a hardness of 2.29 mgll and the carbonate alkalinity in this water is zero. Calculate as CaCO₃

i)	the total hardness,		(5marks)
ii)	carbonate hardness		(6marks)
iii)	non-carbonate hardness in mg/l	J.	(4marks)