

2018/2019 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN STATISTICS

STA 224: COMPUTATIONAL METHODS AND DATA ANALYSIS 11

DATE: APRIL 9, 2019

TIME: 8:30 AM – 10:30 AM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)

- i) Explain the following two terms:
 - i) Eigen vectors

(2 marks)

ii) Simpson's 1/3 rule newton codes

- (2 marks)
- ii) Outline the characteristics of a good random number generator
- (4 marks)

iii) Decompose the Matrix A into LU factorization,

$$\mathbf{A} = \left[\begin{array}{rrrr} 4 & 12 & 8 & 4 \\ 1 & 7 & 18 & 9 \\ 2 & 9 & 20 & 20 \\ 3 & 11 & 15 & 14 \end{array} \right]$$

(5 marks)

iv) Explain the advantages of using R in data analysis as a platfom for statistical programming

(4 marks)

v) If x is random variable with cumulative distribution function f(x) and the generalized inverse function $f^{-1}(y) = lnf(x; f(x) \ge y)$ $0 \le y \le 1$ prove that if U is uniformly distributed over (0,1) then $x=f^{-1}(U)$ is distributed like x. (4 marks)

vi)

- i) Differentiate between forward and backward difference in numerical differentiation (2 marks)
- ii) Consider the table below

X	1.8	1.9	2.0	2.1	2.2
	10.889365	12.703199	14.778112	17.148957	19.855030
f(x)					

Compute: f (2.0)

(3 marks)

vii) Distinguish between analysis of variance and t-test

(4 marks)

QUESTION TWO (20 MARKS)

- a) Write an algorithm to decompose a n x n matrix A into LU, where A=LU (4 marks)
- b) Use LU decomposition methods to solve for the equation:

$$X_1 - X_2 + X_3 = 1$$

 $4X_1 + X_2 - X_3 = -1$
 $2X_1 + 3X_2 + 5X_3 = 2$

(8marks)

c)

- i) Integrate the function $f(x) = xe^x$ using Simpson's 3/8 rule for x=0 to x=0.8 (4 marks)
- ii) Write an R code to integrate f(x) using Simpson's rule (4 marks)

QUESTION THREE (20 MARKS)

a)

i) What is an eigenvalue?

(2 marks)

ii) Using the power method, find numerically the dominant eigenvalue and associated eigenvector of matrix A:

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 4 & -3 \\ 0 & -1 & 1 \end{pmatrix}$$
 (6 marks)

iii) Explain the short comings associated with power method for determining eigenvalue and eigenvector (3 marks)

b)

- Differentiate between standard error of the mean and confidence interval for the mean (4 marks)
- ii) Write computer code to generate Standard error of the mean and confidence interval for the mean (5 marks)

QUESTION FOUR (20 MARKS)

a)

i) Given Y is a random variable taking values in $f(y_k; k < N)$, such that

$$P(Y=yk) = p_k$$

Define a random variable X with the same distribution as Y if U is a uniform random variable on [0; 1] (2 marks)

- ii) Write R code to generate uniformly distributed random integers in the range 1 to 10 (inclusive). (2 marks)
- iii) Write R cord to simulate a Binomial distribution with parameter N and P. (N = 5 and p = 0.25) (8 marks)
- b) Find the real root of f(x) = 2x log 10x 7 correct to four decimal places using the iteration method. (5 marks)
- c) Explain the meaning of statistical inference as used in scientific research field

(3 marks)

QUESTION FIVE (20 MARKS)

a)

i) Distinguish between null hypothesis (H₀) and Alternative hypothesis (H_a)

(2 marks)

ii) Interpret p-value at 95% level of confidence

(4 marks)

- iii) Write a computer code to plot the individual sample and to generate the mean, and standard error (4 marks)
- b) Consider the system of three equations in three unknowns:

$$X_1 + X_2 + X_3 = 1$$

$$3X_1 + 3X_2 + 5X_3 = 0$$

$$3X_1 + 6X_2 + 10X_3 = 0$$

Write an R code to find/solve the above system of equations

(5 marks)

c) Differentiate between Stacks and Queues in terms of operation orders

(5 marks)

--END--