CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION ARTS

MATH 100: GENERAL MATHEMATICS

STREAMS: BeD Arts Y1S1

DAY/DATE: MONDAY 13/08/2018

TIME: 2 HOURS

2.30 P.M - 4.00 P.M

INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: [30 MARKS]

a.	State the properties of real numbers in the equations below <i>i</i> . $3(2x + 5) = 6x + 15$ <i>ii</i> . $14(8) = 8(14)$ <i>iii</i> . $(7 + 8) + 6 = 7 + (8 + 6)$	[3 Marks]
b.	Classify the following numbers i. $\frac{1}{2}$	[3 Marks]

ii.

 $\sqrt{5}$

iii.

 $|_{-4}$

$$\frac{4^{1.5} \times 8^{\frac{1}{3}}}{2^2 \times 32^{-\frac{2}{5}}}$$

c. Evaluate without using a calculator [5 Marks] d. Factorize the expression $3x^2 + 5x + 0.75$ [4 Marks] e. Solve logx=1+log(x-3) [3 Marks] f. The function f is defined by f(x)=. Evaluate f (-3) [2 Marks] g. Which is steeper at x=2 between the curves $y=x^3+2x+5$ and $y=x^3-2x^2+2$? [5 Marks]

h. A survey of 500 randomly chosen individuals is conducted. The individuals are asked to name their favorite sport. The pie chart in Figure 1 summarizes the results of this survey.

- (i) How many individuals in the 500 gave football as their favorite sport? [2 Marks]
- (ii) How many gave a sport other than basketball as their favorite sport? [3 Marks]

QUESTION TWO: [20 MARKS]

a.	Use long division method to show that	$2x^3 + x^2 - 13x + 6$	is divisible by	(<i>x</i> -2)
	Confirm your result above using the fac	ctor theorem.		
	Hence solve $2x^3 + x^2 - 13x + 6$	=0		[10 Marks]
	$\frac{x+1}{x-1} = x - \frac{1}{x-1}$	- 3		
b.	Solve the quadratic equation $x - 1$			[5 Marks]
C.	$y = 2x^2 + 3$ Differentiate the function	rom first principles		[5 Marks]

QUESTION THREE: [20 MARKS]

- a. Functions f and g are defined by f:x3x-5 and g:x3-2x. Evaluate:
 - (i) (f+g)(-1) [2 Marks]
 - (ii) f(2x) 4g(x) [3 Marks]
 - (iii) $f^{-1}(10)$ [3 Marks]
 - (iv) (gf)(x) [2 Marks]
- b. Using the functions f(x) and g(x) in (a) above show that $(f \circ g)(x) \neq (g \circ f)$ [4 Marks]

c. Given the function whose equation below

$$f(x) = \begin{cases} 3x^2 + 4, & \text{if } x \le 4\\ 10, & \text{if } -4 \le x \le 15\\ 1 - x & \text{if } x > 15 \end{cases}$$

Calculate

- i. f(-5) [2 Marks]
- ii. f(2) [2 Marks]
- iii. f(20) [2 Marks]

QUESTION FOUR:[20 MARKS]

(ii)
$$3\log 5 - \frac{1}{2}\log 2500 + 2\log 20$$
 (without the use of a calculator) [4]

Marks]

b) Show that
$$\sqrt[lm]{\frac{a^c}{a^m}} \times \sqrt[mn]{\frac{a^m}{a^n}} \times \sqrt[nl]{\frac{a^n}{a^l}} = 1$$
 [4 Marks]

c) Find the gradient of the curve
$$\frac{x^2 + 2}{x - 5}$$
, at the point x = 1 [4 Marks]

d) Find $\frac{dy}{dx}$ of the following using the indicated techniques in the bracket

i.
$$y = (-x^2 + 2)(5x^3 + 4)$$
 (Product rule) [3 Mark]

ii.
$$\begin{array}{c} 2x+1\\ \dot{\iota}\\ y=\dot{\iota}\end{array}$$
 (Chain rule) [3 Marks]

QUESTION FIVE: [20 MARKS] The data given below refer to the gain of each of a batch of 40 transistors, expressed correct to the nearest whole number. Form a frequency distribution for these data having 4 classes from 70 – 74. [3 Marks]

								[]
81	83	87	74	76	89	82	84	
86	76	77	71	86	85	87	88	
84	81	80	81	73	89	82	79	
81	79	78	80	85	77	84	78	
83	79	80	83	82	79	80	77	
Calculate the		i. Me	an				[3 Marks]	
			ii Me	dian				[3 Marks]
			iii Mo	ode				[3 Marks]
			iv 6 th	decile				[3 Marks]
				v Stai	ndard de	eviation	-	[5
Marks]								

•••