

## UNIVERSITY EXAMINATIONS

# FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION ARTS 

MATH 100: GENERAL MATHEMATICS
STREAMS: BeD Arts Y1S1
TIME: 2 HOURS
DAY/DATE: MONDAY 13/08/2018
2.30 P.M - 4.00 P.M

## INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely


## QUESTION ONE: [30 MARKS]

a. State the properties of real numbers in the equations below
i. $3(2 x+5)=6 x+15$
ii. $\quad 14(8)=8(14)$
iii. $(7+8)+6=7+(8+6)$
b. Classify the following numbers
i. $\quad 1 / 2$

$$
\sqrt{5}
$$

ii.
$\sqrt{-4}$
iii.

$$
\frac{4^{1.5} \times 8^{\frac{1}{3}}}{2^{2} \times 32^{-\frac{2}{5}}}
$$

c. Evaluate without using a calculator
d. Factorize the expression $3 x^{2}+5 x+0.75$
[4 Marks]
e. Solve $\log x=1+\log (x-3)$
[3 Marks]
f. The function f is defined by $f(x)=$. Evaluate $\mathrm{f}(-3)$ [2 Marks]
g. Which is steeper at $x=2$ between the curves $y=x^{3}+2 x+5$ and $y=x^{3}-2 x^{2}+2$ ? [5 Marks]
h. A survey of 500 randomly chosen individuals is conducted. The individuals are asked to name their favorite sport. The pie chart in Figure 1 summarizes the results of this survey.


Figure 1
(i) How many individuals in the 500 gave football as their favorite sport?
[2 Marks]
(ii) How many gave a sport other than basketball as their favorite sport?
[3 Marks]

## QUESTION TWO: [20 MARKS]

a. Use long division method to show that $2 x^{3}+x^{2}-13 x+6$ is divisible by $(x-2)$

Confirm your result above using the factor theorem.

Hence solve

$$
2 x^{3}+x^{2}-13 x+6=0
$$

$$
\frac{x+1}{x-1}=x-3
$$

b. Solve the quadratic equation
[5 Marks]

$$
y=2 x^{2}+3
$$

c. Differentiate the function from first principles
[5 Marks]

QUESTION THREE: [20 MARKS]
a. Functions f and g are defined by $f: x 3 x-5$ and $g: x 3-2 x$. Evaluate:
(i) $\quad(f+g)(-1)$
(ii) $\quad f(2 x)-4 g(x)$
(iii) $\quad f^{-1}(10)$
(iv) $\quad(g f)(x)$
[3 Marks]
[3 Marks]
[2 Marks]
[2 Marks]
b. Using the functions $f(x)$ and $g(x)$ in (a) above show that $(f \circ g)(x) \neq(g \circ f)$ Marks]
c. Given the function whose equation below

$$
f(x)=\left\{\begin{array}{l}
3 x^{2}+4, \text { if } x \leq 4 \\
10, \text { if }-4 \leq x \leq 1 \\
1-x \text { if } x>15
\end{array}\right\}
$$

## Calculate

i. $f(-5)$
ii. $f(2)$
iii. $f(20)$

## QUESTION FOUR:[ 20 MARKS]

a) Evaluate the following
(i) $\quad \log _{2} 73.45 \quad$ (using a calculator)

Marks]
(ii) $3 \log 5-\frac{1}{2} \log 2500+2 \log 20$ (without the use of a calculator) [4 Marks]
b) Show that $\sqrt[1 m]{\frac{a^{c}}{a^{m}}} \times \sqrt[m n]{\frac{a^{m}}{a^{n}}} \times \sqrt[n]{\frac{a^{n}}{a^{l}}}=1$
[4 Marks]

$$
\frac{x^{2}+2}{x-5}
$$

c) Find the gradient of the curve , at the point $x=1$
d) Find $\frac{d y}{d x}$ of the following using the indicated techniques in the bracket
i. $\quad y=\left(-x^{2}+2\right)\left(5 x^{3}+4\right) \quad$ (Product rule)
$\begin{array}{cc} & 2 x+1 \\ \text { ii. } \quad \dot{i} \\ & y=i\end{array}$
[3 Marks]

## QUESTION FIVE: [20 MARKS]

The data given below refer to the gain of each of a batch of 40 transistors, expressed correct to the nearest whole number. Form a frequency distribution for these data having 4 classes from

| 70-74. |  |  |  |  |  |  |  | [3 Marks] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 83 | 87 | 74 | 76 | 89 | 82 | 84 |  |
| 86 | 76 | 77 | 71 | 86 | 85 | 87 | 88 |  |
| 84 | 81 | 80 | 81 | 73 | 89 | 82 | 79 |  |
| 81 | 79 | 78 | 80 | 85 | 77 | 84 | 78 |  |
| 83 | 79 | 80 | 83 | 82 | 79 | 80 | 77 |  |
| Calculate the |  |  | i. Mean |  |  |  |  | [3 Marks] |
|  |  |  | ii Median |  |  |  |  | [3 Marks] |
|  |  |  | iii Mode |  |  |  |  | [3 Marks] |
|  |  |  | iv $6^{\text {th }}$ decile |  |  |  |  | [3 Marks] |
|  |  |  |  | v Sta | ard | iati |  | [5 |
| Marks] |  |  |  |  |  |  |  |  |

$\qquad$ ...

