CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS, BACHELOR OF SCIENCE, BACHELOR OF ARTS (MATHS/ECONS), BACHELOR OF SCIENCE (ECON STATS)

MATH 201: LINEAR ALGEBRA I

STREAMS: BED (SCI & ARTS), BSC, BA (MATHS-ECON), BSC (ECON STAT)(Y2S2) TIME: 2 HOURS

DAY/DATE: WEDNESDAY 11/4/2018

11.30 A.M. – 1.30 P.M.

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answer legibly and use your time wisely

QUESTION ONE (30 MARKS)

(a) Consider the system in unknown x and y

x + ay = 4

ax + 9y = b

Find which values of a does the system have a unique solution, and for which pairs of values (a, b) does the system have more than one solution.

- (b) Evaluate the WROSKIAN $W(e^x, e^{-x}, e^{-2x}, 0)$ [4 marks]
- (c) Distinguish the Kernel and range of a transformation T. Hence prove that if $T: U \to V$ is linear transformation, then the kernel of T is a subspace of U. [5 marks]

(d) Show that the subset
$$W = \{(x, y) : x \ge 0, y \ge 0, x, y \in \mathbb{R}^2\}$$
 is not a subspace of \mathbb{R}^2
[3 marks]

(e) For any vector
$$v = (v_1, v_2)$$
 in \mathbb{R}^2 , define T: $\mathbb{R}^2 \to \mathbb{R}^3$ defined by
 $T(v_1, v_2) = (v_1 - v_2 3v_1 - 2v_2, v_1, 2v_2)$, show that is a linear transformation.[5 marks]

(f) Determine if $p_1 = 1 - t$, $p_2 = 2 - t + t^2$ and $p_3 = 2t + 3t^2$ is a basis for the vector space $p_2(t)$ of polynomials of degree less or equal to 2. [5 marks]

(g) Given the following basis for
$$\mathbb{R}^3 B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$
 and
 $B' = \{(1, 0, 1), (2, 1, 2), (1, 2, 2)\}$ find a transition matrix from *B* to *B'* [4 marks]

QUESTION TWO (20 MARKS)

 Using the concept of elementary product show that the determinant of the given matrix is the product of elements of the leading diagonals.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$
 [4 marks]

(b) Let
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$
 and $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is the equation $Ax = b$ consistent for all values of $b_1 b_2 b_3$? Verify [4 marks]

(c) By use of the concept of rank of matrix, determine the type of solution to the following system of equations

$$2x_1 + x_2 + x_3 = 1$$

-x_1 + 2x_2 + 3x_3 = 3
$$x_1 + 3x_2 - 2x_3 = 4$$
 [6 marks]

- (d) For which values of a and b does the below system has
 - (i) No solution
 - (ii) Unique solution
 - (iii) Infinitely many solutions

$$x_1 - 2x_2 + 3x_3 = 4$$

$$2x_1 - 3x_2 + ax_3 = 5$$

$$3x_1 - 4x_2 + 5x_3 = b$$
 [6 marks]

QUESTION THREE (20 MARKS)

(a) Using of row reduction method, find the inverse for the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ 2 & 1 & 5 \end{bmatrix}$ hence

solve the system x + y + 2z = 2 x + y - 3z = 2 2x + y + 5z = 5[8 marks]

- (b) Let $F \colon \mathbb{R}^4 \to \mathbb{R}^3$ be linear mapping defined by F(x, y, z, t) = (x y + z + t, 2x 2y + 3z + 4t, 3x 3y + 4z + 5t). Find
 - (i) The basis and dimension of the kernel of F
 - (ii) A basis and dimension of the image of F
 - (iii) Using the parts (i) and (ii) above, verify the dimension theorem [7 marks]
- (c) Prove that if $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every set containing more than n vectors is linearly dependent. [5 marks]

QUESTION FOUR (20 MARKS)

- (ii) Find the matrix of T relative to the basis $B' = \{(1, -1), (1, 2)\}$ [3 marks]
- (iii) Find the transition matrix P from the basis B to the basis B' and verify the relation $P^{-1}[T]_B P = (T)_{B'}$ [3 marks]

(b) Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ and define a transformation
T: $\mathbb{R}^2 \to \mathbb{R}^3$ by $T(x) = Ax$ so that $T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$

- (i) Find T(u), the image of u under T [1 mark]
 (ii) Find an x in whose image under Tis b [5 marks]
- (iii) Determine if *c* the range of the transformation T is [5 marks]

QUESTION FIVE (20 MARKS)

(a) Use Cramer's method to solve the system of equation

$$x + y - 2z = -3$$

$$w + 2x - y = 2$$

$$2w + 4x + y - 3z = -2$$

$$w - 2x - 7y - z = 5$$
[8 marks]

(b) Find the basis and dimension of the solution space for the equations

$$2x_{1} + 2x_{2} - x_{3} + x_{5} = 0$$

-x₁ - x₂ + 2x₃ - 3x₄ + x₅ = 0
x₁ + x₂ - 2x₃ - x₅ = 0
x₃ + x₄ + x₅ = 0 [6 marks]

- (c) For a matrix $A_{(m x n)}$, prove that
 - (i) If A is invertible, then Ax=b has a unique solution for any b [4 marks]
 - (ii) If A is row equivalent to an identify matrix l_n , then A is invertible.[4 marks]
