CHUKA

UNIVERSITY EXAMINATIONS
FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION ARTS

MATH 123/113: VECTORS AND MECHANICS

STREAMS: BED (ARTS)
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 25/07/2018
5.30 PM - 8.30 PM

INSTRUCTIONS:

- All Questions are Compulsory
- Do not write on the question paper

Question One (30 Marks)
(a) Define the following terms
(i) Mechanics
(ii) Vector
(iii) Moment
(b) Calculate the angle between the vectors
$\tilde{a}=4 \tilde{i}-2 \tilde{j}+1 \tilde{h}$
$\tilde{b}=2 \tilde{i}+5 \tilde{j}-7 \tilde{k}$
(c) Given $\tilde{a} \cdot \tilde{b}=\tilde{a} \cdot \tilde{c}$, show that \tilde{a} is perpendicular to $\tilde{b}-\tilde{c}$
(d) Given $\overrightarrow{A B}=\tilde{a}$ and $\overrightarrow{A C}=\tilde{b}$, show that the area of triangle ABC is given by Area $\frac{1}{2} \sqrt{(a b)^{2}-(\tilde{a} \cdot \tilde{b})^{2}}$ [4 marks]
(e) Determine the co-ordinate of the point where the line $\tilde{r}=\left(\begin{array}{c}5 \\ 3 \\ -1\end{array}\right)+1\left(\begin{array}{c}1 \\ -4 \\ 2\end{array}\right)$ meets the plane $\tilde{r} \cdot\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=12$
[5 marks]
(f) Calculate the work done when a force $\vec{F}=-3 \tilde{i}+4 \tilde{j}-5 \tilde{k}$ moves through a displacement $\tilde{d}=-\tilde{i}+3 \tilde{j}-\tilde{k}$
[5 marks]
(g) A projectile is launched at an angle θ to the horizontal with an initial velocity $\mathrm{v}_{\mathrm{o}} \mathrm{m} / \mathrm{s}$. show that its maximum range is given by $R_{\max }=\frac{v o^{2}}{g}$

Question Two (20 Marks)

(a) A force whose point of application is $(1,-2,3)$ is given by $\vec{F}=2 \tilde{i}+3 \tilde{j}-4 \tilde{k}$. Calculate the magnitude of the moment of the fore about the point $(1,2,-3)$
(b) Given $\vec{F}=\sin 2 x \tilde{i}-3 \cos y \tilde{j}+\operatorname{tanz} \tilde{k}$, determine D iv F at $\left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}\right)$
[4 marks]
(c) Show that the magnitude of vector product of two vectors $\tilde{a} \wedge \tilde{b}$ is equal to the area of the parallelogram where $\tilde{a} \wedge \tilde{b}$ form adjacent sides. [5 marks]
(d) If $\tilde{a} \wedge \tilde{b}$ are vectors and $m>0$ is a scalar, show that vector addition is distributive.
[5 marks]

Question Three (20 Marks)

(a) State Lami's theorem.
[2 marks]
(b) A body of weight 50 N hang from a string attached to a point on a vertical wall. The string will break if its tension exceeds 60 N . if the body is pulled away from the wall by a horizontal force PN, what angle does the string make with the vertical when it breaks and what is the value of P ?
[6 marks]
(c) A particle moving in a straight line with constant acceleration travels 10 m in the first second and 15 M in the second second. Determine
(i) Its initial velocity
(ii) Its acceleration
[2 marks]
(iii) The distance it travels during the third second.
(d) Calculate the volume of the parallelepiped defined by vectors

$$
2 \tilde{i}-3 \tilde{j}+4 \tilde{k}, \tilde{i}-2 \tilde{j}+\tilde{k} \wedge 4 \tilde{i}+\tilde{j}-3 \tilde{k}
$$

