CHUKA

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS), BACHELOR OF SCIENCE (GENERAL) AND BACHELOR OF EDUCATION (ARTS AND SCIENCE)

MATH 121: CALCULUS I

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDYA 23/07/2018
11.30 AM - 1.30 PM

INSTRUCTIONS:

- Answer ALL questions
- Adhere to the instructions on the answer booklet.

QUESTION ONE

a). Determine the domain of the function $f(x)=\sqrt{x^{2}-x-12}$

3mks
b). Evaluate the following limits:
i. $\quad \lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}$
ii. $\quad \lim _{x \rightarrow \infty} \frac{x^{3}}{(x+4)\left(2 x^{2}+1\right)}$

3 mks .

3 mks .
c). Given that $y=f(x)=\frac{1}{x^{2}+1}$, find $\frac{d y}{d x}$ from first principles. 4mks.
d). Find the equations of lines tangent to the curve $y^{2}-6 x^{2}+4 y+1=0$. at the point $(2,1)$.

5mks
e). Differentiate the curve $y=x^{x}$ at the point $\mathrm{x}=1$

4mks.
f). Given that $x=\sin ^{2} \theta$, and $y=\cos ^{3} \theta$, evaluate $\frac{d y}{d x}+\frac{3}{2} y^{\frac{1}{3}}$

5mks
g). Show that the $f(x)=x^{3}-2 x^{2}+2 x-4$ has a zero in the interval $[0,3] \quad 3 \mathrm{mks}$
h). Evaluate the derivative of $y=\cot \sqrt{x-1}$

4mks.

QUESTION TWO

a). Show that the points of intersection of the two graphs $y^{2}=4 x$ and $y^{2}+2 x^{2}=6$ are orthogonal

5 mks
b). Evaluate $\quad \lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x} \quad 4 \mathrm{mks}$
c). The finance department in a company that produces an automatic camera established that the profit $p(x)$ is given by $p(x)=-5 x^{2}+80 x-156$, find the number of cameras that must be sold in order to maximize profits and find the maximum profits. 4 mks
d). Differentiate the following functions
(i) $y=\frac{x^{2}+1}{x^{2}-1}$
(ii) $x^{2}+y^{2}=1$

3 mks

4mks

QUESTION THREE

a). Differentiate the curve $\quad y=2^{3 x}$ at the point $x=1 \quad$ 4mks.
b). Given that $y=\sin ^{-1}(3 x)$, find $\frac{d y}{d x} \quad 4 \mathrm{mks}$
c). A spherical balloon is being blown up so that its volume increases at the rate of $1.5 \mathrm{~cm}^{3}$ per second. Find the rate at which the radius increases when the volume of the balloon is $56 \mathrm{~cm}^{3}$

5mks
d). Sketch the graph with the following characteristics

$$
f(0)=f(2)=0, \quad f(x)<0 \text { if } x<1, f^{\prime}(1)=0, \quad f^{\prime}(x)>0 \text { if } x>1, f^{\prime \prime}(x)>0
$$

4mks
e). Using $y=\sqrt{2}$, estimate the value of $\sqrt{101}$

