CHUKA

UNIVERSITY

RESIT/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS), BACHELOR OF SCIENCE (GENERAL) AND BACHELOR OF EDUCATION (ARTS AND SCIENCE)

MATH 121: CALCULUS I

STREAMS:	TIME: 2 HOURS
DAY/DATE: MONDYA 23/07/2018	11.30 AM – 1.30 PM
INSTRUCTIONS:	
 Answer ALL questions Adhere to the instructions on the answer booklet. 	
QUESTION ONE	
a). Determine the domain of the function $f(x) = \sqrt{x^2 - x - 12}$	
b). Evaluate the following limits:	3mks
i. $\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4}$	3mks.
ii. $\lim_{x \to \infty} \frac{x^3}{(x+4)(2x^2+1)}$	3mks.
c). Given that $y = f(x) = \frac{1}{x^2 + 1}$, find $\frac{dy}{dx}$ from first principles.	4mks.
d). Find the equations of lines tangent to the curve $y^2 - 6x^2 + 4y$	+1=0.
at the point $(2, 1)$.	5mks
e). Differentiate the curve $y = x^x$ at the point $x = 1$	4mks.
f). Given that $x = \sin^2 \theta$, and $y = \cos^3 \theta$, evaluate $\frac{dy}{dx} + \frac{3}{2}y^{\frac{1}{3}}$	5mks

g). Show that the $f(x) = x^3 - 2x^2 + 2x - 4$ has a zero in the interval [0,3] 3mks

h). Evaluate the derivative of
$$y = \cot \sqrt{x} - 1$$
 4mks.

QUESTION TWO

a). Show that the points of intersection of the two graphs $y^2 = 4x$ and $y^2 + 2x^2 = 6$ are orthogonal 5mks

b). Evaluate $\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$ 4mks

c). The finance department in a company that produces an automatic camera established that the profit p(x) is given by $p(x) = -5x^2 + 80x - 156$, find the number of cameras that must be sold in order to maximize profits and find the maximum profits. 4mks

d). Differentiate the following functions

(i)
$$y = \frac{x^2 + 1}{x^2 - 1}$$
 3mks

(ii)
$$x^2 + y^2 = 1$$
 4mks

5mks

QUESTION THREE

a). Differentiate the curve
$$y = 2^{3x}$$
 at the point $x = 1$ 4mks.

b). Given that
$$y = \sin^{-1}(3x)$$
, find $\frac{dy}{dx}$ 4mks

c). A spherical balloon is being blown up so that its volume increases at the rate of 1.5cm³ per second. Find the rate at which the radius increases when the volume of the balloon is 56cm³

d). Sketch the graph with the following characteristics

$$f(0) = f(2) = 0$$
, $f(x) < 0$ if $x < 1, f'(1) = 0$, $f'(x) > 0$ if $x > 1, f''(x) > 0$

4mks
e). Using
$$y = \sqrt{2}$$
, estimate the value of $\sqrt{101}$
Page 2 of 3
