THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

FACULTY OF SCIENCE

NATURAL SCIENCE (PHYSICS) DEPARTMENT

PHY 406: Nuclear Physics Assignment II

Date: 2 nd April 2020			Duration: 1hr
Attempt ALL	Questions		
Q1 (a) With the aid of a diagram state the ordering of the first six lowest nuclear			
energy	y level		(3m)
(b) Give the expected shell model spin and parity assignments for the ground states Of Pr (A=141, Z=49) (1m)			
(c) Determine the magnetic moments of the nuclides in (b) above, in magnetron			terms of, the nuclear (4m)
Q2 (a) (i) Define the term degeneracy			(1m)
(ii) Determine the degeneracy for the level $l = 3$			(2m)
(b) If the spin-orbit potential is included in (a)(ii) above, determine			
(i) (ii)	the possible values of j		(2m)
(iii)	the degeneracy of each lev	el	(3m)
(c) Identify the following types of Nuclear reactions			
i)	12 C $(p,p)^{12}$ C	(1m)	
ii)	7 Li (d,p) 8 Li	(1m)	
iii)	2 H(γ , p) n	(1m)	
iv)	$^{16}O(d,t)^{15}O$	(1m)	
-	-	alues of the spin-orbit interacti	
hence determine the energy splitting in terms of the quantum orbital quantum			

number and Planck's constant.

(10marks)