

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 2216

COURSE TITLE: FINANCIAL

MATHEMATICS I

DATE: 15TH APRIL 2019 TIME: 1100 - 1300

HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. Show all your Workings.

This paper consists of 4 printed pages. Please turn over. QUESTION 1

a) Define the term financial management and state the three decision functions that are vested with financial manager.

[4 Marks]

b) Differentiate between effective interest rate and Nominal interest rate.

[2 Marks]

c) Find the value at interest rate of 5 % per annum effective for the following functions;

[12 Marks]

(i)
$$\ddot{a}_{65}$$
 (ii) \ddot{s}_{62} (iii) $a_{63}^{(4)}$ (iv) \overline{a}_{21}

d) John Grisham is considering investing in a security that has the following tribulations of possible one year returns:

Probability of	0.10	0.2	0.3	0.3	0.1
occurrence		0	0	0	0
Possible returns	-	0.0	0.1	0.2	0.3
	0.10	0	0	0	0

What is the expected return and the standard deviation associated with the investment

[6 Marks]

e) Suppose that the force of interest per annum at time *t* years is

$$\delta(t) = a\mathcal{C}^{-bt}$$

Show that the present value of 1 due at time t years is

$$v(t) = \exp \left[\frac{a}{b} \left(e^{-bt} - 1 \right) \right]$$

Marks]

f) Differentiate between the terms **Annuity** and **Perpetuity** as used in financial mathematics.

[2 Marks]

QUESTION 2

a) Assume that $\delta(t)$, the force of interest per annum at time t (years), is given by the formula

$$\delta(t) = 0.08$$

$$\delta(t) = 0.06$$

$$0 \le t < 5$$

$$5 \le t < 10$$

$$t \ge 10$$

Derive expressions for v(t), the present value of 1 due at time t

- b) An investor effects' a contract under which he will pay 15 premiums annually in advance into an account which accumulates according to the above force of interest. Each premium will be of amount £900 and the first premium will be paid at time 0. In return the investor will receive either
 - (i) The accumulated amount of the account one year after the final premium is paid: or
 - (ii) A level annuity payable annually for eight years, the first payment being made one year after the final premium is paid.
 - (iii) Find the lump sum payment under option (i) and the amount of the annual annuity under option (ii)

[20

Marks]

QUESTION 3

Two project proposals for electricity installation in an institution were presented to you as a financial advisor of a certain consultant firm;

Project X: delegates all installations tasks to a tendered company. The estimated cash flow for project X, are;

Time period	Estimated cost	Nature of
<u>charges</u>		
Beginning of year 1	(\$150,000)	
Contactors fee		

Beginning of year 2	(\$250,000)	
Contactors fee		
Beginning of year 3	(\$250,000)	
Contactors fee		
End of year 3	\$1,000,000	Sales

Project Y: proposes that all the installations work is done inhouse by purchasing the required implements and use of own staff. The estimated cash-flow for this project are,

Time period	Estimated cost	Nature of
<u>charges</u>		
Beginning of year 1	(\$325,000)	Staff cost
Throughout year 1	(\$75,000)	Staff cost
Throughout year 2	(\$90,000)	Staff cost
Throughout year 3	(\$120,000)	Staff cost
End of year 3	\$1,000,000	Sales

Values in brackets indicates expenses or cash out flows, whereas in project Y the cost throughout the year are assumed to be spread evenly within the year.

Required: Discriminate between the two projects using;

(i). Net present Value, and	[10
Marks]	
(ii). Internal rate of return	[10
Marks]	

QUESTION 4

a) If $\delta(t)$ and $A(t_o,t)$ are continuous functions of t for $t_o \le t$, and the principle of consistency holds for $t_o \le t_1 \le t_2$. Proof that, $A(t_1,t_2) = \exp \int_{-\infty}^{t} \delta(t) dt$.

Marks]

b) Given that

$$\ddot{a}_{\frac{n}{n}} = 7.029584$$
 and $\ddot{a}_{\frac{2n}{n}} = 10.934563$

find the rate of interest i and duration n. **Marks**]

[6

c) A bank lends a company £ 5,000 at a fixed rate of interest of 10 % per annum. The loan is to be repaid by five level annual payments. Calculate the interest and capital payments at each repayment date.

[7 Marks]

//END