
 MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 2216 COURSE TITLE: FINANCIAL MATHEMATICS I

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. Show all your Workings.

This paper consists of 4 printed pages. Please turn over.

QUESTION 1

a) Define the term financial management and state the three decision functions that are vested with financial manager.
[4 Marks]
b) Differentiate between effective interest rate and Nominal interest rate.
[2
Marks]
c) Find the value at interest rate of 5% per annum effective for the following functions;
[12 Marks]
(i)
\ddot{a}_{65}
(ii) \ddot{s}_{6}
(iii) $a_{63}^{(4)}$ (iv) \bar{a}_{21}
7
ᄀ
7

d) John Grisham is considering investing in a security that has the following tribulations of possible one year returns:

Probability of	0.10	0.2	0.3	0.3	0.1
occurrence		0	0	0	0
Possible returns	-	0.0	0.1	0.2	0.3
	0.10	0	0	0	0

What is the expected return and the standard deviation associated with the investment

[6 Marks]

e) Suppose that the force of interest per annum at time t years is

$$
\delta(t)=a e^{-b t}
$$

Show that the present value of 1 due at time t years is

$$
v(t)=\exp _{\square}^{\square} \frac{a}{b}\left(e^{-b t}-1\right)_{\square}^{\square}
$$

Marks]

f) Differentiate between the terms Annuity and Perpetuity as used in financial mathematics.
[2 Marks]

QUESTION 2

a) Assume that $\delta(t)$, the force of interest per annum at time t (years), is given by the formula

$$
\delta(t)=\begin{array}{ll}
\square 0.08 & 0 \leq t<5 \\
\square 0.06 & 5 \leq t<10 \\
\square 0.04 & t \geq 10
\end{array}
$$

Derive expressions for $v(t)$, the present value of 1 due at time t
b) An investor effects' a contract under which he will pay 15 premiums annually in advance into an account which accumulates according to the above force of interest. Each premium will be of amount $£ 900$ and the first premium will be paid at time 0 . In return the investor will receive either
(i) The accumulated amount of the account one year after the final premium is paid: or
(ii) A level annuity payable annually for eight years, the first payment being made one year after the final premium is paid.
(iii) Find the lump sum payment under option (i) and the amount of the annual annuity under option (ii)

Marks]

QUESTION 3

Two project proposals for electricity installation in an institution were presented to you as a financial advisor of a certain consultant firm;

Project X: delegates all installations tasks to a tendered company. The estimated cash flow for project X , are;

Time period
Estimated cost
Nature of
charges
Beginning of year 1
(\$150,000)
Contactors fee
Beginning of year 2
Contactors fee
Beginning of year 3
Contactors fee End of year 3
(\$250,000)
\$250,000)
\$1,000,000
Sales

Project Y: proposes that all the installations work is done inhouse by purchasing the required implements and use of own staff. The estimated cash-flow for this project are,

Time period		Estimated cost
charges	Nature of	
Beginning of year 1	$(\$ 325,000)$	Staff cost
Throughout year 1	$(\$ 75,000)$	Staff cost
Throughout year 2	$(\$ 90,000)$	Staff cost
Throughout year 3	$(\$ 120,000)$	Staff cost
End of year 3	$\$ 1,000,000$	Sales

Values in brackets indicates expenses or cash out flows, whereas in project Y the cost throughout the year are assumed to be spread evenly within the year.

Required: Discriminate between the two projects using;
(i). Net present Value, and

Marks]

(ii). Internal rate of return

Marks]

QUESTION 4

a) If $\delta(t)$ and $A\left(t_{o}, t\right)$ are continuous functions of t for $t_{o} \leq t$, and the principle of consistency holds for $t_{o} \leq t_{1} \leq t_{2}$. Proof that, $A\left(t_{1}, t_{2}\right)=\exp \int_{1}^{2} \delta(t) d t$.

Marks]

b) Given that

$$
\ddot{a}_{\bar{\pi}}=7.029584 \text { and } \ddot{a}_{2 n \mid}=10.934563
$$

find the rate of interest i and duration n. Marks]
c) A bank lends a company $£ 5,000$ at a fixed rate of interest of 10 \% per annum. The loan is to be repaid by five level annual payments. Calculate the interest and capital payments at each repayment date.
[7
Marks]

//END

