

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020

DIGITAL SCHOOL OF VIRTUAL AND OPEN LEARNING SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF

SCH 401: ELECTROCHEMISTRY

SCIENCE

DATE: WEDNESDAY 21ST OCTOBER 2020 TIME: 2.00 P.M - 4.00 P.M

INSTRUCTIONS:

Answer ALL the questions

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} = 0.0821 \text{ } l\text{-}atm \text{ K}^{-1} \text{ mol}^{-1}, \ 0^{\circ}\text{C} = 273 \text{ K} \text{ F} = 96500c, \ \ln x = 2.303 \log x,$ Atomic Mass Ag = 108

Question One (20 marks)

(a). Define the following terms as used in electrochemistry.

i) Ampere	(1 marks)
ii) Cathode	(1 marks)
iii) Voltage	(1 mark)
iv) Oxidation	(1 mark)

- (b). An anode of a galvanic cell is referred to as negative electrode. Explain. (2 marks)
- (c). Design a galvanic cell that uses the redox reaction: $2Cr_{(s)} + 3 Sn^{2+}_{(aq)} \rightarrow 2 Cr^{3+}_{(aq)} + 3 Sn_{(s)}$
 - (i). Identify the anode and cathode half-reactions, and sketch the experimental setup. Label the anode and cathode, indicate the direction of electron and ion flow, and identify the sign of each electrode. (5 marks)
- (ii). Given the standard reduction potentials (E°) for $Sn^{2+} + Sn = -0.14 \text{ V}$ and $Cr^{3+} + Cr^{2+} = -0.74 \text{ V}$, and molar concentration of Sn^{2+} and Cr^{3+} as $3.0x10^{-4}M$ 1.1 x $10^{-3}M$, respectively Calculate E° for the cell at 25 °C. (4 marks)

- (d). Establish the difference between electroplating and electrowinning. (2 marks)
- (e). A layer of silver is electroplated on a coffee server using a constant current of 100 mA. Calculate time required to deposit 2.99 g of silver. (3 marks)

Question Two (20 marks)

- . (a). Describe THREE mechanisms responsible for the motion of ions in a given electrolyte to and from an electrode surface (3 marks)
- (b). State Kohlrausch's law and give the mathematical relationship between the limiting molar conductivity and concentration. (4 marks)
- (c). The following table gives conductance data at infinite dilution at 298 K

Electrolyte	Λ (Ω ⁻¹ cm ² mol ⁻¹)
NaX	83
HX	413
NaX	127

Calculate the conductance of NaH at infinite dilution.

(3 marks)

- (d). Describe how conductometric titrations is applied in determining the end point in an acidbase reaction. List two conditions that afford reproducible data. (3 marks)
- (e). Using appropriate examples rationalize the symmetrical conductometric titration curve for a strong acid against a strong base. (4 marks)

Question Three (20 marks)

a) Explain why molar conductivity of aqueous solution of sodium chloride will increase upon dilution. (3 marks)

- Accidentally chewing on a stray fragment of Al foil can cause a sharp tooth pain if Al comes in contact with an amalgam filling. The filling, an alloy of silver, tin and mercury acts as a cathode of a tiny galvanic cell; Al behaves as an anode and saliva serves as an electrolyte. When Al and filling comes in contact; an electric current passes from Al to the filling which is sensed by a nerve in the tooth. Al is oxidised at the anode and O₂ is reduced to water at the cathode.
- i) Write balanced equations for the anode, cathode and overall cell reaction. (3 marks)
- ii) Write the Nernst equation in a form that applies at body temperature (approximately 37 °C) (4 marks)
- c) State TWO functions of a salt bridge in a galvanic cell. (2 marks)
- d)). Write the mathematical Heyrovsky-Ilkovic equation for the dropping mercury electrode (DME). Define the symbols used and graphically or otherwise, illustrate how half-wave potential and the number of moles are determined. (4 marks)
- e) Draw the diagram of SHE electrode and describe its working principles using equations where necessary. (4 marks)

Question Four (10 marks)

- a) In what ways are fuel cells and batteries similar, and in what ways are they different? (2 marks)
- b) In the study of batteries, a mercury battery uses the following electrode half-reactions:

$$HgO_{(s)} + H_2O_{(l)} + 2 e^- \rightarrow Hg_{(l)} + 2 OH_{(aq)}$$
 $E^{\circ} = 0.098 \text{ V}$

$$ZnO_{(s)} + H_2O_{(I)} + 2 e^- \rightarrow Zn_{(s)} + 2 OH_{(aq)}$$
 $E^{\circ} = -1.260 \text{ V}$

- i) Write a balanced equation for the overall cell reaction. (1mark)
- ii) Calculate ΔG° (in kilojoules) and K at 25 °C for the cell. (3 marks)
- e) "Corrosion is considered as an electrochemical reaction". Discuss this statement and explain how anodic prevention of corrosion is achieved. (4marks)